首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2‐Alkyl‐, 2‐aryl‐, and 2‐halo‐substituted derivatives of 7‐methyl‐6‐fluoro‐1,3,4‐thiadiazolo[3,2‐a]pyrimidin‐6‐one ( 3 ) were prepared by reaction of 2‐substituted 5‐amino‐1,3,4‐thiadiazoles ( 1 ) and ethyl 2‐fluoroacetoacetate ( 2 ) in polyphosphoric acid. A convenient procedure was developed for the synthesis of new 2‐amino derivatives of 2‐R‐7‐methyl‐6‐fluoro‐1,3,4‐thiadiazolo[3,2‐a]pyrimidin‐6‐one ( 5 ). J. Heterocyclic Chem., (2011).  相似文献   

2.
A series of novel 1‐[(1R)‐1‐(6‐fluoro‐1,3‐benzothiazol‐2‐yl)ethyl]‐3‐substituted phenyl ureas were synthesized by the condensation of (1R)‐1‐(6‐fluoro‐1,3‐benzothiazol‐2‐yl)ethanamine with substituted phenyl isocyanates under mild conditions. Their structures were confirmed 1H, 13C, and 19F NMR spectra, and elemental analyses. The optical activities were confirmed by optical rotation measurements. The inhibition activity of 1‐[(1R)‐1‐(6‐fluoro‐1,3‐benzothiazol‐2‐yl)ethyl]‐3‐substituted phenyl ureas to acetylcholinesterase (ACHE) and butyrylcholinesterase (BCHE) was also tested. Preliminary bioassay indicated that the target ureas displayed excellent acetylcholinesterase and butyrylcholinesterase inhibition activity. J. Heterocyclic Chem., 2011.  相似文献   

3.
Reported herein is an asymmetric [3+2] cycloaddition reaction of azomethine ylides with β‐trifluoromethyl β,β‐disubstituted enones, a reaction which is enabled by a Ming‐Phos‐derived copper(I) catalyst (Ming‐Phos=chiral sulfinamide monophosphines, Figure 2 ). This method provides scalable and efficient access to the highly substituted pyrrolidines with a trifluoromethylated, all‐carbon quaternary stereocenter in good yields with up to greater than 20:1 d.r. and 98 % ee. The reaction has a broad substrate scope and tolerates a wide range of functional groups.  相似文献   

4.
Catalytic addition of chiral phosphine, that is, (R)‐ or (S)‐SITCP, to an α‐substituted allene ester generated a zwitterionic dipole. Under optimized reaction conditions, this dipole could engage isatine‐derived N‐Boc‐ketimines in a novel mode of [3+2] annulation reaction. Pyrrolinyl spirooxindoles are thus afforded in high yields and with excellent enantioselectivities. The unprecedented annulation reaction successfully facilitated the construction of sp3‐rich and highly substituted 3,2′‐pyrrolidinyl spirooxindoles supporting many chiral centers.  相似文献   

5.
An Ir‐catalyzed intermolecular asymmetric dearomatization reaction of β‐naphthols with allyl alcohols or allyl ethers was developed. When an iridium catalyst generated from [Ir(COD)Cl]2 (COD=cyclooctadiene) and a chiral P/olefin ligand is employed, highly functionalized β‐naphthalenone compounds bearing an all‐carbon‐substituted quaternary chiral center were obtained in up to 92 % yield and 98 % ee . The direct utilization of allyl alcohols as electrophiles represents an improvement from the viewpoint of atom economy. Allyl ethers were found to undergo asymmetric allylic substitution reaction under Ir catalysis for the first time. The diverse transformations of the dearomatized product to various motifs render this method attractive.  相似文献   

6.
An enantioselective C(sp3)?C(sp3) cross‐coupling of racemic α‐silylated alkyl iodides and alkylzinc reagents is reported. The reaction is catalyzed by NiCl2/(S,S)‐Bn‐Pybox and yields α‐chiral silanes with high enantiocontrol. The catalyst system does not promote the cross‐coupling of the corresponding carbon analogue, corroborating the stabilizing effect of the silyl group on the alkyl radical intermediate (α‐silicon effect). Both coupling partners can be, but do not need to be, functionalized, and hence, even α‐chiral silanes with no functional group in direct proximity of the asymmetrically substituted carbon atom become accessible. This distinguishes the new method from established approaches for the synthesis of α‐chiral silanes.  相似文献   

7.
A series of α‐(fluoro‐substituted phenyl)pyridines have been synthesized by means of a palladium‐catalyzed cross‐coupling reaction between fluoro‐substituted phenylboronic acid and 2‐bromopyridine or its derivatives. The reactivities of the phenylboronic acids containing di‐ and tri‐fluoro substituents with α‐pyridyl bromide were investigated in different catalyst systems. Unsuccessful results were observed in the Pd/C and PPh3 catalyst system due to phenylboronic acid containing electron‐withdrawing F atom(s). For the catalyst system of Pd(OAc)2/PPh3, the reactions gave moderate yields of 55% –80%, meanwhile, affording 10% –20% of dimerisation (self‐coupling) by‐products, but trace products were obtained in coupling with 2,4‐difluorophenylboronic acids because of steric hinderance. Pd(PPh3)4 was more reactive for boronic acids with sterically hindering F atom(s), and the coupling reactions gave good yields of 90% and 91% without any self‐coupling by‐product.  相似文献   

8.
An α‐diimine Pd(II) complex containing chiral sec‐phenethyl groups, {bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dichloropalladium (rac‐ C1 ), was synthesized and characterized. rac‐ C1 was applied as an efficient catalyst for the Suzuki–Miyaura cross‐coupling reaction between various aniline halides and arylboronic acid in PEG‐400–H2O at room temperature. Among a series of aniline halides, rac‐ C1 did not catalyze the cross‐coupling of aniline chlorides and fluorides but efficiently catalyzed the cross‐coupling of aniline bromides and iodides with phenylboronic acid. The catalytic activity reduced slightly with increasing steric hindrance of the aniline bromides. The complexes {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]‐2,3‐butadiene}dichloropalladium and {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]acenaphthene}dichloropalladium were also found to be efficient catalysts for the reaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In the molecular structures of a series of substituted chalcones, namely (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐phenylprop‐2‐en‐1‐one, C21H15FO2, (I), (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐fluorophenyl)prop‐2‐en‐1‐one, C21H14F2O2, (II), (2E)‐1‐(4‐chlorophenyl)‐3‐(2‐fluoro‐4‐phenoxyphenyl)prop‐2‐en‐1‐one, C21H14ClFO2, (III), (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐methylphenyl)prop‐2‐en‐1‐one, C22H17FO2, (IV), and (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐methoxyphenyl)prop‐2‐en‐1‐one, C22H17FO3, (V), the configuration of the keto group with respect to the olefinic double bond is scis. The molecules pack utilizing weak C—H...O and C—H...π intermolecular contacts. Identical packing motifs involving C—H...O interactions, forming both chains and dimers, along with C—H...π dimers and π–π aromatic interactions are observed in the fluoro, chloro and methyl derivatives.  相似文献   

10.
The active complexes of chiral N,N′‐dioxide ligands with dysprosium and magnesium salts catalyze the hetero‐Diels–Alder reaction between 2‐aza‐3‐silyloxy‐butadienes and alkylidene oxindoles to selectively form 3,3′‐ and 3,4′‐piperidinoyl spirooxindoles, respectively, in very high yields and with excellent enantioselectivities. The exo ‐selective asymmetric cycloaddition successfully regaled the construction of sp3‐rich and highly substituted natural‐product‐based spirooxindoles supporting many chiral centers, including contiguous all‐carbon quaternary centers.  相似文献   

11.
New substituted 2‐ferrocenylbenzimidazole derivatives are prepared by the oxidation of corresponding Schiff's bases in situ, generated from corresponding 1,2‐diamino‐4‐fluoro‐5‐(1‐piperazinyl)benzenes and 2‐ferrocenecarboxaldehyde using nitrobenzene.  相似文献   

12.
The first Lewis acid catalyzed asymmetric Friedel–Crafts alkylation reaction of ortho‐hydroxybenzyl alcohols with C3‐substituted indoles is described. A chiral N,N′‐dioxide Sc(OTf)3 complex served not only to promote formation of ortho‐quinone methides (o‐QMs) in situ but also induced the asymmetry of the reaction. This methodology enables a novel activation of ortho‐hydroxybenzyl alcohols, thus affording the desired chiral diarylindol‐2‐ylmethanes in up to 99 % yield and 99 % ee. A range of functional groups were also tolerated under the mild reaction conditions. Moreover, this strategy gives concise access to enantioenriched indole‐fused benzoxocines.  相似文献   

13.
Synthesis of some new class of regioselective spiro isoxazolidine derivatives have been described using N‐benzyl‐C‐fluoro substituted‐phenyl nitrones with new dipolarophiles via 1,3‐dipolar cycloaddition reaction in ionic liquid. The novel spiro cycloadducts found to exhibit good synthetic potentiality as they could be converted into synthetically more important spiro 1,3‐amino alcohols. Simple reaction methodology, noninvolvent of catalysts, good to excellent yields, and greener approaches are the important features noticed in this syntheses.  相似文献   

14.
(E )‐δ‐Boryl‐substituted anti ‐homoallylic alcohols are synthesized in a highly diastereo‐ and enantioselective manner from 1,1‐di(boryl)alk‐3‐enes and aldehydes. Mechanistically, the reaction consists of 1) palladium‐catalyzed double‐bond transposition of the 1,1‐di(boryl)alk‐3‐enes to 1,1‐di(boryl)alk‐2‐enes, 2) chiral phosphoric acid catalyzed allylation of aldehydes, and 3) palladium‐catalyzed geometrical isomerization from the Z to E isomer. As a result, the configurations of two chiral centers and one double bond are all controlled with high selectivity in a single reaction vessel.  相似文献   

15.
A general catalyzed direct C?H functionalization of s‐tetrazines is reported. Under mild reaction conditions, N‐directed ortho‐C?H activation of tetrazines allows the introduction of various functional groups, thus forming carbon–heteroatom bonds: C?X (X=I, Br, Cl) and C?O. Based on this methodology, we developed electrophilic mono‐ and poly‐ortho‐fluorination of tetrazines. Microwave irradiation was optimized to afford fluorinated s‐aryltetrazines, with satisfactory selectivity, within only ten minutes. This work provides an efficient and practical entry for further accessing highly substituted tetrazine derivatives (iodo, bromo, chloro, fluoro, and acetate precursors). It gives access to ortho‐functionalized aryltetrazines which are difficult to obtain by classical Pinner‐like syntheses.  相似文献   

16.
Desymmetrization of the divinyl carbinol 1,4‐pentadien‐3‐ol was accomplished by the asymmetric 1,3‐dipolar cycloaddition of azomethine imines based on a magnesium‐mediated, multinucleating chiral reaction system utilizing diisopropyl (R,R)‐tartrate as the chiral auxiliary. The corresponding optically active trans‐pyrazolidines, each with three contiguous stereogenic centers, were obtained with excellent regio‐, diastereo‐, and enantioselectivity, with results as high as 99 % ee. This reaction was shown to be applicable to both aryl‐ and alkyl‐substituted azomethine imines. The use of a catalytic amount of diisopropyl (R,R)‐tartrate was also effective when accompanied by the addition of MgBr2.  相似文献   

17.
A cinchona alkaloid‐functionalized heterogeneous catalyst is prepared through a thiol‐ene click reaction of chiral N‐(3,5‐ditrifluoromethylbenzyl)quininium bromide and a mesostructured silica, which is obtained by co‐condensation of 1,2‐bis(triethoxysilyl)ethane and 3‐(triethoxysilyl)propane‐1‐thiol. Structural analyses and characterizations disclose its well‐defined chiral single‐site active center, and electron microscopy images reveal its monodisperse property. As a heterogenous catalyst, it enables an efficient asymmetric epoxidation of achiral β‐trifluoromethyl‐β,β‐disubstituted enones, the obtained chiral products can then be converted easily into enriched chiral β‐trifluoromethyl‐β‐hydroxy ketones through a sequential epoxidation‐relay reduction process. Furthermore, such a heterogeneous catalyst can be recovered conveniently and reused in asymmetric epoxidation of 4,4,4‐trifluoro‐1,3‐diphenylbut‐2‐enone, showing an attractive feature in a practical construction of enriched chiral β‐CF3‐substituted molecules.  相似文献   

18.
A highly regio‐, diastereo‐ and enantioselective Michael addition–alkylation reaction between α‐substituted cyano ketones and (Z)‐bromonitrostyrenes has been realized by using a chiral N,N′‐dioxide as organocatalyst. A variety of substrates performed well in this reaction, and the corresponding multifunctionalized chiral 2,3‐dihydrofurans were obtained in up to 95 % yield with 95:5 dr and 93 % ee.  相似文献   

19.
An enantioselective C−H addition to a C=C bond represents the most atom‐efficient route for the construction of chiral carbon–carbon skeletons, a central research topic in organic synthesis. We herein report the enantioselective yttrium‐catalyzed C(sp3)−H bond addition of 2‐methyl azaarenes, such as 2‐methyl pyridines, to various substituted cyclopropenes and norbornenes. This process efficiently afforded a new family of chiral pyridylmethyl‐functionalized cyclopropane and norbornane derivatives in high yields and high enantioselectivities (up to 97 % ee ).  相似文献   

20.
The asymmetric ring‐opening/cyclization of cyclopropyl ketones with primary amine nucleophiles was catalyzed by a chiral N,N′‐dioxide/scandium(III) complex through a kinetic resolution process. A broad range of cyclopropyl ketones and primary amines are suitable substrates of this reaction. The corresponding products were afforded in excellent enantioselectivities and yields (up to 97 % ee and 98 % yield) under mild reaction conditions. This method provides a promising access to chiral 2,3‐dihydropyrroles as well as an effective procedure for the kinetic resolution of 2‐substituted cyclopropyl ketones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号