首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The first series of niobium–tungsten–lanthanide (Nb‐W‐Ln) heterometallic polyoxometalates {Ln12W12O36(H2O)24(Nb6O19)12} (Ln=Y, La, Sm, Eu, Yb) have been obtained, which are comprised of giant cluster‐in‐cluster‐like ({Ln12W12}‐in‐{Nb72}) structures built from 12 hexaniobate {Nb6O19} clusters gathered together by a rare 24‐nuclearity sodalite‐type heterometal–oxide cage {Ln12W12O36(H2O)24}. The Nb‐W‐Ln clusters present the largest multi‐metal polyoxoniobates and a series of rare high‐nuclearity 4d‐5d‐4f multicomponent clusters. Furthermore, the giant Nb‐W‐Ln clusters may be isolated as discrete inorganic alkali salts and can be used as building blocks to form high‐dimensional inorganic–organic hybrid frameworks.  相似文献   

2.
New homoleptic complexes of selected rare‐earth elements containing the unsymmetrically substituted amidinate ligand [MeC(NEt)(NtBu)] [= (L)] were synthesized and fully characterized. Treatment of in situ‐prepared Li(L) ( 1 ) with anhydrous lanthanide(III) chlorides, LnCl3 (Ln = Sc, La, Ce, Ho), afforded three different types of amidinate complexes depending on the ionic radius of the central metal atom. The large La3+ formed the octa‐coordinate DME solvate La(L)3(DME) ( 2 ). Using Ce3+, the octa‐coordinate “ate” complex Li(THF)[Ce(L)4] ( 3 ) was formed. Depending on the crystallization conditions, compound 3 could be crystallized in two modifications differing in the coordination environment around Li. In the case of the smaller Sc3+ and Ho3+ ions, six‐coordinate homoleptic Sc(L)3 ( 4 ) and Ho(L)3 ( 5 ) were isolated. The title compounds were fully characterized by spectroscopic and analytical methods as well as single‐crystal X‐ray diffraction. With Ln = La and Ce, several by‐products incorporating lithium, chlorine and/or oxygen were also isolated and structurally characterized.  相似文献   

3.
Reactions of the binary, pseudo‐homoatomic Zintl anion (Pb2Bi2)2? with Ln(C5Me4H)3 (Ln=La, Ce, Nd, Gd, Sm, Tb) in the presence of [2.2.2]crypt in ethane‐1,2‐diamine/toluene yielded ten [K([2.2.2]crypt)]+ salts of lanthanide‐doped semimetal clusters with 13 or 14 surface atoms. Single‐crystal X‐ray diffraction and energy‐dispersive Xray spectroscopy indicated the presence of the anions [Ln@Pb6Bi8]3?, [Ln@Pb3Bi10]3?, [Ln@Pb7Bi7]4?, or [Ln@Pb4Bi9]4? in single or double salts; the latter showed various ratios of the components in the solid state. The anions are the first ternary intermetalloid clusters comprising only elements of the sixth period of the periodic table, namely, Pb, Bi and lanthanides. This study, which was complemented by ESI mass spectrometry and 139La NMR spectroscopy in solution, rationalizes a continuous development of the ratio of 13:14‐atom cages with the ionic radius of the embedded Ln3+ ion, which seems to select the most suitable cage type. Quantum chemical investigations helped to analyze this situation in more detail and to explain the observed subtle influence of the atomic radii. Magnetic measurements confirmed that the embedded Ln3+ ions keep their expected paramagnetic or diamagnetic nature.  相似文献   

4.
The molecular and electronic structures, stabilities, bonding features, and magnetoresponsive properties of three‐membered [c‐Ln3]+/0/? (Ln = La, Ce, Pr, Nd, Gd, Lu) and heterocyclic six‐membered [c‐Ln3E3]q (Ln = La, Ce, Pr, Nd, Gd, Lu; E = C, N; q = 0 or 1) rings have been investigated by means of electronic structure calculation methods at the DFT level. The [c‐Ln3]+/0/? clusters are predicted to be bound with respect to dissociation to their constituent atoms, the estimated binding energies ranging from 45.8 to 2056.4 kJ/mol. The [c‐Ln3] rings capture easily a planar three‐coordinated nitrogen atom at the center or above the center of the ring yielding the lanthanide nitride clusters [c‐Ln33‐N)] adopting a planar geometry, except [c‐La33‐N)] which exhibits pyramidal geometry. The [c‐Ln33‐N)] clusters are predicted to be bound, with respect to dissociation to N (4S) atom and [c‐Ln3] clusters in their ground states, the binding energies ranging from 53.9 to 257.9 kcal/mol. The six‐membered [c‐Ln3E3]q rings are predicted to be bound with respect to dissociation to LnEq monomers in their ground states with dissociation energies in the range of 173.8 to 318.0 kcal/mol. Calculation of the NICSzz‐scan curves of the clusters predicted a “hermaphrodic” magnetic response of the [c‐Ln3]+/0/? and heterocyclic six‐membered [c‐Ln3E3]q rings, manifested by the coexistence of successive diatropic (aromatic) and paratropic (antiaromatic) zones. The [c‐La3]+/0/? and [c‐Lu3]? are predicted to be weakly antiaromatic, the [c‐Lu3]0/+, [c‐Lu3C3]+, and [c‐Lu3N3] double (σ+π) aromatic, and the [c‐Gd3C3] and [c‐Gd3N3]+ rings (σ+δ)‐aromatic systems. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

5.
Contributions on the Investigation of Inorganic Nonstoichiometric Compounds. XLV. New Thermal Decomposition Products of Ln2CeMO6Cl3 – Preparation of Structure‐related (La, Tb)3.5TaO6Cl4–x The thermal decomposition (T £ 900–1050°C) of Ln2CeMO6Cl3 (M = Nb, Ta; Ln = La, Ce, Pr, Nd, Sm) leads to the formation of two mixed‐valenced phases (Ln, Ce)3.25MO6Cl3.5–x (phase ‘‘AB”︁”︁) and (Ln, Ce)3.5MO6Cl4–x (phase ‘‘BB”︁”︁) and to the formation of chlorine according to redox‐reactions between Ce4+ and Cl. Single crystals of both phases (Ln, Ce)3.25MO6Cl3.5–x (‘‘AB”︁”︁) and (Ln, Ce)3.5MO6Cl4–x (‘‘BB”︁”︁) were obtained by chemical transport reactions using both powder of Ln2CeMO6Cl3 (phase ‘‘A”︁”︁) and powder of (Ln, Ce)3.25MO6Cl3.5–x (phase ‘‘AB”︁”︁) as starting materials and chlorine (p{Cl2; 298 K} = 1 atm) or HCl (p{HCl; 298 K} = 1 atm) as transport agent. A crystal of (La, Ce)3.25NbO6Cl3.5–x (”︁AB”︁”︁) (space group: C2/m, a = 35.288(1) Å, b = 5.418(5) Å, c = 9.522(1) Å, β = 98.95(7)°, Z = 4) was investigated by x‐ray diffraction methods, a crystal of (Pr, Ce)3.5NbO6Cl4–x (”︁BB”︁”︁) was investigated by synchrotron radiation (λ = 0.56 Å) diffraction methods. The lattice constants are a = 18.863(6) Å, b = 5.454(5) Å, c = 9.527(6) Å, β = 102.44(3)° and Z = 4. Structure determination in the space group C2/m (No. 12) let to R1 = 0.0313. Main building units are NbO6‐polyhedra with slightly distorted trigonally prismatic environment for Nb and chains of face‐sharing Cl6‐octahedra along [010]. The rare earth ions are coordinated by chlorine and oxygen atoms. These main structure features confirmed the expected relation to the starting material Ln2CeMO6Cl3 (phase ”︁A”︁”︁) and to (Ln, Ce)3.25MO6Cl3.5–x (phase ”︁AB”︁”︁).  相似文献   

6.
Dilanthanum triniobium di­sulfide octaoxide, La2Nb3S2O8, crystallizes in the orthorhombic space group Pnnm and is isostructural with the Ln2Ta3X2O8 (Ln = La, Ce, Pr and Nd, and X = S and Se) family of tantalum compounds. Nb4+ and Nb5+ ions co‐exist in the structure and occupy different crystallographic sites. While the Nb4+ ions are found in mixed oxy­gen and sulfur octahedra, the Nb5+ ions are found in oxy­gen‐only octahedra.  相似文献   

7.
Polyoxometalates (POMs) with heterodinuclear lanthanoid cores, TBA8H4[{Ln(μ2‐OH)2Ln′}(γ‐SiW10O36)2] ( LnLn′ ; Ln=Gd, Dy; Ln′=Eu, Yb, Lu; TBA=tetra‐n‐butylammonium), were successfully synthesized through the stepwise incorporation of two types of lanthanoid cations into the vacant sites of lacunary [γ‐SiW10O36]8? units without the use of templating cations. The incorporation of a Ln3+ ion into the vacant site between two [γ‐SiW10O36]8? units afforded mononuclear Ln3+‐containing sandwich‐type POMs with vacant sites ( Ln1 ; TBA8H5[{Ln(H2O)4}(γ‐SiW10O36)2]; Ln=Dy, Gd, La). The vacant sites in Ln1 were surrounded by coordinating W? O and Ln? O oxygen atoms. On the addition of one equivalent of [Ln′(acac)3] to solutions of Dy1 or Gd1 in 1,2‐dichloroethane (DCE), heterodinuclear lanthanoid cores with bis(μ2‐OH) bridging ligands, [Dy(μ2‐OH)2Ln′]4+, were selectively synthesized ( LnLn′ ; Ln=Dy, Gd; Ln′=Eu, Yb, Lu). On the other hand, La1 , which contained the largest lanthanoid cation, could not accommodate a second Ln′3+ ion. DyLn′ showed single‐molecule magnet behavior and their energy barriers for magnetization reversal (ΔE/kB) could be manipulated by adjusting the coordination geometry and anisotropy of the Dy3+ ion by tuning the adjacent Ln′3+ ion in the heterodinuclear [Dy(μ2‐OH)2Ln′]4+ cores. The energy barriers increased in the order: DyLu (ΔE/kB=48 K)< DyYb (53 K)< DyDy (66 K)< DyEu (73 K), with an increase in the ionic radii of Ln′3+; DyEu showed the highest energy barrier.  相似文献   

8.
Al‐ and Ga‐containing open‐Dawson polyoxometalates (POMs), K10[{Al4(μ‐OH)6}{α,α‐Si2W18O66}] · 28.5H2O ( Al4 ‐ open ) and K10[{Ga4(μ‐OH)6}(α,α‐Si2W18O66)] · 25H2O ( Ga4 ‐ open ) were synthesized by the reaction of trilacunary Keggin POM, [A‐α‐SiW9O34]10–, with Al(NO3)3 · 9H2O or Ga(NO3)3 · nH2O, and unequivocally characterized by single‐crystal X‐ray analysis, 29Si and 183W NMR, and FT‐IR spectroscopy as well as elemental analysis and TG/DTA. Single‐crystal X‐ray analysis revealed that the {M4(μ‐OH)6}6+ (M = Al, Ga) clusters were included in an open pocket of the open‐Dawson polyanion, [α,α‐Si2W18O66]16–, which was constituted by the fusion of two trilacunary Keggin POMs via two W–O–W bonds. These two open‐Dawson structural POMs showed clear difference of the bite angles depending on the size of ionic radii. In cases of both compounds, the solution 29Si and 183W NMR spectra in D2O showed only one signal and five signals, respectively. These spectra were consistent with the molecular structures of Al4 ‐ and Ga4 ‐ open , suggesting that these polyoxoanions were obtained as single species and maintained their molecular structures in solution.  相似文献   

9.
The design of structurally well‐defined anionic molecular metal–oxygen clusters, polyoxometalates (POMs), leads to inorganic receptors with unique and tunable properties. Herein, an α‐Dawson‐type silicotungstate, TBA8[α‐Si2W18O62] ? 3 H2O ( II ) that possesses a ?8 charge was successfully synthesized by dimerization of a trivacant lacunary α‐Keggin‐type silicotungstate TBA4H6[α‐SiW9O34] ? 2 H2O ( I ) in an organic solvent. POM II could be reversibly protonated (in the presence of acid) and deprotonated (in the presence of base) inside the aperture by means of intramolecular hydrogen bonds with retention of the POM structure. In contrast, the aperture of phosphorus‐centered POM TBA6[α‐P2W18O62]?H2O ( III ) was not protonated inside the aperture. The density functional theory (DFT) calculations revealed that the basicities and charges of internal μ3‐oxygen atoms were increased by changing the central heteroatoms from P5+ to Si4+, thereby supporting the protonation of II . Additionally, II showed much higher catalytic performance for the Knoevenagel condensation of ethyl cyanoacetate with benzaldehyde than I and III .  相似文献   

10.
Trisamarium molybdenum heptaoxide, Sm3MoO7, is isomorphous with Ln3MoO7 (Ln = La and Pr). The crystal structure consists of chains of corner‐linked MoO6 octahedra running parallel to the b axis and separated from each other by seven‐ or eight‐coordinate Sm–O polyhedra. In contrast to La3MoO7 and Pr3MoO7, a splitting of one Sm site into two positions is observed.  相似文献   

11.
A series of Ln–Ni heterometallic coordination polymers, {[Ln2Ni(MIDA)4(H2O)6](H2O)4} (Ln = La ( 1 ), Ce ( 2 ), Pr ( 3 ), and Nd ( 4 ); H2MIDA = N‐methyl‐iminodiacetic acid), were obtained under hydrothermal conditions. Single crystal X‐ray diffraction revealed that they feature two‐dimensional isomorphic frameworks, which could be viewed as the construction by one‐dimensional {Ln}n chain connecting by bridges of [Ni(MIDA)2]2. The magnetic measurements reveal that compounds 2 – 4 exhibit antiferromagnetic properties. TGA results indicate compounds 1 and 4 have good thermostability with the critical temperature of 375 °C.  相似文献   

12.
Synthesis and Structure of Nitridoborate Nitrides Ln4(B2N4)N (Ln = La, Ce) of the Formula Type Ln3+x(B2N4)Nx (x = 0, 1, 2) The missing member of the formula type Ln3+x(B2N4)Nx with x = 1 was synthesized and characterized for Ln = La and Ce. According to the single‐crystal X‐ray structure solution Ce4(B2N4)N crystallizes in the space group C2/m (Z = 2) with the lattice parameters a = 1238.2(1) pm, b = 357.32(3) pm, c = 905.21(7) pm and β = 129.700(1)°. The anisotropic structure refinement converged at R1 = 0.039 and wR2 = 0.099 for all independent reflections. A powder pattern of La4(B2N4)N was indexed isotypically with a = 1260.4(1) pm, b = 366.15(3) pm, c = 919.8(1) pm and β = 129.727(6)°. A structure rational for nitridoborates and nitridoborate nitrides containing B2N4 ions with the general formula Ln3+x(B2N4)Nx with x = 0, 1, 2 is presented.  相似文献   

13.
Syntheses and Crystal Structures of New Alkali Metal Rare‐Earth Tellurides of the Compositions KLnTe2 (Ln = La, Pr, Nd, Gd), RbLnTe2 (Ln = Ce, Nd) and CsLnTe2 (Ln = Nd) Of the compounds ALnQ2 (A = Na, K, Rb, Cs; Ln = rare earth‐metal; Q = S, Se, Te) the crystal structures of the new tellurides KLaTe2, KPrTe2, KNdTe2, KGdTe2, RbCeTe2, RbNdTe2, and CsNdTe2 were determined by single‐crystal X‐ray analyses. They all crystallize in the α‐NaFeO2 type with space group R3¯m and three formula units in the unit cell. The lattice parameters are: KLaTe2: a = 466.63(3) pm, c = 2441.1(3) pm; KPrTe2: a = 459.73(2) pm, c = 2439.8(1) pm; KNdTe2: a = 457.83(3) pm, c = 2443.9(2) pm; KGdTe2: a = 449.71(2) pm, c = 2443.3(1) pm; RbCeTe2: a = 465.18(2) pm, c = 2533.6(2) pm; RbNdTe2: a = 459.80(3) pm, c = 2536.5(2) pm, and CsNdTe2: a = 461.42(3) pm, c = 2553.9(3) pm. Characteristics of the α‐NaFeO2 structure type as an ordered substitutional variant of the rock‐salt (NaCl) type are layers of corner‐sharing [(A+/Ln3+)(Te2—)6] octahedra with a layerwise alternating occupation by the cations A+ and Ln3+.  相似文献   

14.
Postsynthetic installation of lanthanide cubanes into a metallosupramolecular framework via a single‐crystal‐to‐single‐crystal (SCSC) transformation is presented. Soaking single crystals of K6[Rh4Zn4O(l ‐cys)12] (K6[ 1 ]; l ‐H2cys=l ‐cysteine) in a water/ethanol solution containing Ln(OAc)3 (Ln3+=lanthanide ion) results in the exchange of K+ by Ln3+ with retention of the single crystallinity, producing Ln2[ 1 ] ( 2Ln ) and Ln0.33[Ln4(OH)4(OAc)3(H2O)7][ 1 ] ( 3Ln ) for early and late lanthanides, respectively. While the Ln3+ ions in 2Ln exist as disordered aqua species, those in 3Ln form ordered hydroxide‐bridged cubane clusters that connect [ 1 ]6? anions in a 3D metal‐organic framework through coordination bonds with carboxylate groups. This study shows the utility of an anionic metallosupramolecular framework with carboxylate groups for the creation of a series of metal cubanes that have great potential for various applications, such as magnetic materials and heterogeneous catalysts.  相似文献   

15.
A series of nine [Sb7W36O133Ln3M2(OAc)(H2O)8]17? heterometallic anions ( Ln3M2 ; Ln=La–Gd, M=Co; Ln=Ce, M=Ni and Zn) have been obtained by reacting 3 d metal disubstituted Krebs‐type tungstoantimonates(III) with early lanthanides. Their unique tetrameric structure contains a novel {MW9O33} capping unit formed by a planar {MW6O24} fragment to which three {WO2} groups are condensed to form a tungstate skeleton identical to that of a hypothetical trilacunary derivative of the ?‐Keggin cluster. It is shown, for the first time, that classical Anderson–Evans {MW6O24} anions can act as building blocks to construct purely inorganic large frameworks. Unprecedented reactivity in the outer ring of these disk‐shaped species is also revealed. The Ln3M2 anions possess chirality owing to a {Sb4O4} cluster being encapsulated in left‐ or right‐handed orientations. Their ability to self‐associate in blackberry‐type vesicles in solution has been assessed for the Ce3Co2 derivative.  相似文献   

16.
The aggregation of molecular metal oxides into larger superstructures can bridge the gap between molecular compounds and solid‐state materials. Here, we report that functionalization of polyoxotungstates with organo‐boron substituents leads to giant polyoxometalate‐based nanocapsules with dimensions of up to 4 nm. A “lock and key” mechanism enables the site‐specific anchoring of aromatic organo‐boronic acids to metal‐functionalized Dawson anions [M3P2W15O62]9? (M=TaV or NbV), resulting in unique nanocapsules containing up to twelve POM units. Experimental and theoretical studies provide initial insights into the role of the organo‐boron moieties and the metal‐functionalized POMs for the assembly of the giant aggregates. The study therefore lays the foundations for the design of organo‐POM‐based functional nanostructures.  相似文献   

17.
Two types of 4f–3d thiostannates with general formula [Hen]2[Ln(en)4(CuSn3S9)] ? 0.5 en ( Ln1 ; Ln=La, 1 ; Ce, 2 ) and [Hen]4[Ln(en)4]2[Cu6Sn6S20] ? 3 en ( Ln2 ; Ln=Nd, 3 ; Gd, 4 ; Er, 5 ) were prepared by reactions of Ln2O3, Cu, Sn, and S in ethylenediamine (en) under solvothermal conditions between 160 and 190 °C. However, reactions performed in the range from 120 to 140 °C resulted in crystallization of [Sn2S6]4? compounds and CuS powder. In 1 and 2 , three SnS4 tetrahedra and one CuS3 triangle are joined by sharing sulfur atoms to form a novel [CuSn3S9]5? cluster that coordinates to the Ln3+ ion of [Ln(en)4]3+ (Ln=La, Ce) as a monodentate ligand. The [CuSn3S9]5? unit is the first thio‐based heterometallic adamantane‐like cluster coordinating to a lanthanide center. In 3 – 5 , six SnS4 tetrahedra and six CuS3 triangles are connected by sharing common sulfur atoms to form the ternary [Cu6Sn6S20]10? cluster, in which a Cu6 core is enclosed by two Sn3S10 fragments. The topological structure of the novel Cu6 core can be regarded as two Cu4 tetrahedra joined by a common edge. The Ln3+ ions in Ln1 and Ln2 are in nine‐ and eightfold coordination, respectively, which leads to the formation of the [CuSn3S9]5? and [Cu6Sn6S20]10? clusters under identical synthetic conditions. The syntheses of Ln1 and Ln2 show the influence of the lanthanide contraction on the quaternary Ln/Cu/Sn/S system in ethylenediamine. Compounds 1 – 5 exhibit bandgaps in the range of 2.09–2.48 eV depending on the two different types of clusters in the compounds. Compounds 1 , 3 , and 4 lost their organic components in the temperature range of 110–350 °C by multistep processes.  相似文献   

18.
A giant tetrahedral heterometallic polyoxometalate (POM) [Dy30Co8Ge12W108O408(OH)42(OH2)30]56?, which shows single‐molecule magnet (SMM) behavior, is described. This hybrid contains the largest number of 4f ions of any polyoxometalate (POM) reported to date and is the first to incorporate two different 3d–4f and 4f coordination cluster assemblies within same POM framework.  相似文献   

19.
Reaction of early lanthanides, GeO2, and Na2WO4 in a NaOAc buffer results in large crown‐shaped polyoxometalates based on [Ln2GeW10O38]6? subunits. By using Ni2+ as a crystallizing agent, [Na?Ln12Ge6W60O228(H2O)24]35? ( Na?Ln12 ) hexamers formed by alternating β(1,5)/β(1,8) subunits were obtained for Ln=Pr, Nd. The addition of K+ led to a similar anion for Ln=Sm, namely, [K?Sm12Ge6W60O228(H2O)22]35? ( K?Sm12 ) and [K?K7Ln24Ge12W120O444(OH)12(H2O)64]52? ( K?Ln24 ) dodecamers that consist of a central core identical to K?Sm12 decorated with six external γ(3,4) subunits for Ln=Pr, Nd. These anions dissociate in water into hexameric cores and monomeric entities, as shown by ESI mass spectrometry. The former self‐assemble into spherical, hollow, and single‐layered blackberry‐type structures with radii of approximately 75 nm, as monitored by laser light scattering (LLS) and TEM techniques. Analogous studies performed for K?Nd24 in water/acetone mixtures show that the dodecamers remain stable and form in turn their own type of blackberries with sizes that increase from approximately 20 to 50 nm with increasing acetone content. This control over both the composition and size of the vesicle‐like assemblies is achieved for the first time by modifying the architecture of the species that undergoes supramolecular association through the solvent polarity.  相似文献   

20.
Two unique organic–inorganic hybrid polyoxometalates constructed from Preyssler‐type [Na(H2O)P5W30O110]14? ({P5W30}) subunits and TM/Ln–carboxylate–Ln connectors (TM=transition metal, Ln=lanthanide), KNa7[{Sm6Mn(μ‐H2O)2(OCH2COO)7(H2O)18}{Na(H2O)P5W30O110}] ? 22 H2O ( 1 ) and K4[{Sm4Cu2(gly)2(ox)(H2O)24}{NaP5W30O110}]Cl2 ? 25 H2O ( 2 ; gly=glycine, ox=oxalate) have been hydrothermally synthesized and characterized by elemental analyses, IR spectra, UV/Vis‐NIR spectra, thermogravimetric analyses, power X‐ray diffraction, and single‐crystal X‐ray diffraction. Compound 1 displays one interesting 3D framework built by three types of subunits, {P5W30}, [Sm2Mn(μ‐H2O)2(OCH2COO)2(H2O)5]4+, and [Sm4(OCH2COO)5 (H2O)13]2+, whereas 2 also manifests the other intriguing 3D architecture created by three types of subunits, {P5W30}, [SmCu(gly)(H2O)8]4+, and [Sm2(ox)(H2O)8]4+. To our knowledge, 1 and 2 are the first 3D frameworks that contain {P5W30} units and TM/Ln–carboxylate–Ln connectors. The fluorescent properties of 1 and 2 have been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号