首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stability of laminar flow in a curved channel formed by two concentric cylindrical surfaces is investigated. The channel is occupied by a fluid saturated porous medium; the flow in the channel is driven by a constant azimuthal pressure gradient. The momentum equation takes into account two drag terms: the Darcy term that describes friction between the fluid and the porous matrix, and the Brinkman term, which allows imposing the no-slip boundary condition at the channel walls. An analytical solution for the basic flow velocity is obtained. Numerical analysis is carried out using the collocation method to investigate the onset of instability leading to the development of a secondary motion in the form of toroidal vortices. The dependence of the critical Dean number on porosity and the channel width is analyzed.  相似文献   

2.
Stability of Bingham fluids is investigated numerically in azimuthal pressure-driven flow between two infinitely long concentric cylinders. An infinitesimal perturbation is introduced to the basic flow and its time evolution is monitored using normal mode linear stability analysis. An eigenvalue problem is obtained which is solved numerically using pseudo-spectral collocation method. Numerical results are obtained for two different cases: (i) the inner cylinder is rotating at constant velocity while the outer cylinder is fixed (i.e., the Taylor-Dean flow) and (ii) both cylinders are fixed (i.e., the Dean flow). The results show that the yield stress always has a stabilizing effect on the Taylor-Dean flow. But, for the Dean flow the effect of the yield stress is predicted to be stabilizing or destabilizing depending on the magnitude of the Bingham number and also the gap size.  相似文献   

3.
This paper presents numerical simulations of Newtonian and viscoelastic flows through a 180° curved duct of square cross section with a long straight outlet region. A particular attention is paid to the development of the flow in the output rectangular region after the curved part. The viscoelastic fluid is modeled using the constitutive equation proposed by Phan–Thien–Tanner (PTT). The numerical results, obtained with a finite-volume method, are shown for three different Dean numbers (125,137,150)(125,137,150) and for three Deborah numbers (0.1,0.2,0.3)(0.1,0.2,0.3). The necessary outlet length to impose boundary conditions is presented and discussed for these cases. Streamlines and vortex formation are shown to illustrate and analyze the evolution of the secondary flow in this region.  相似文献   

4.
The fluid flowing in a rotating curved duct is subjected to both the Coriolis force due to a rotation and the centrifugal force due to a curvature. In this paper, the combined effects of the two forces on the flows in rotating curved rectangular ducts are examined numerically. According to the aspect ratio of the cross-section, the rectangular ducts are divided into three types: η>1, η=1, η<1, where η is the aspect ratio. The variations of the flow structures with the force ratio F (the ratio of the Corislis force to the centrifugal force) are studied in detail and many hitherto unknown flow patterns are found. The effects of the force ratio and the aspect ratio of the cross-section on the friction factor are also examined. Present results show both the characteristics of the secondary flow, axial flow and the natures of the friction factor.  相似文献   

5.
It is generally assumed in curved pipe flow analyses that the curvature ratio, δ, of the pipe is very small, in which case the flow depends on a single parameter, the Dean number. This is not the case if δ is not very small. To determine the importance of this effect we have numerically solved the full Navier-Stokes equations, in primitive variable form, for arbitrary values of δ. A factored ADI finite-difference scheme has been used, employing Chorin's artificial compressibility technique. The results show that the central-difference calculation on a staggered grid is stable, without adding artificial damping terms, due to coupling between pressure and velocity. A spatially variable time step is used with a fixed Courant number.  相似文献   

6.
The effects of the aspect ratio on unsteady solutions through the curved duct flow are studied numerically by a spectral based computational procedure with a temperature gradient between the vertical sidewalls for the Grashof number 100 ≤ Gr ≤ 2 000. The outer wall of the duct is heated while the inner wall is cooled and the top and bottom walls are adiabatic. In this paper, unsteady solutions are calculated by the time history analysis of the Nusselt number for the Dean numbers Dn = 100 and Dn = 500 and the aspect ratios 1≤γ≤ 3. Water is taken as a working fluid (Pr =7.0). It is found that at Dn = 100, there appears a steady-state solution for small or large Gr. For moderate Gr, however, the steady-state solution turns into the periodic solution if γ is increased. For Dn = 500, on the other hand, it is analyzed that the steady-state solution turns into the chaotic solution for small and large Gr for any γ lying in the range. For moderate Gr at Dn = 500, however, the steady-state flow turns into the chaotic flow through the periodic oscillating flow if the aspect ratio is increased.  相似文献   

7.
The steady two-dimensional stagnation-point flow of a second-grade fluid with slip is examined. The fluid impinges on the wall either orthogonally or obliquely. Numerical solutions are obtained using a quasi-linearization technique.  相似文献   

8.
This study investigates the instability analysis of modulated Taylor vortices flow by utilising a numerical method. Based on the consideration that the outer cylinder is fixed and the inner cylinder rotates at a non-zero averaged speed under varying modulated amplitudes and frequencies, the flow is converted from one-dimension Couette flow to Taylor vortices. When the modulated amplitude is greater than 1 and the rotation speed of the inner cylinder exceeds the threshold value for one-dimensional flow, the flow will be more stable at intermediate and high frequencies. When the modulated amplitude is sufficiently large and the inner cylinder rotates at medium frequency, subharmonic flow arises.  相似文献   

9.
10.
Curved channels are ubiquitous in microfluidic systems. The pressuredriven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under the assumptions of the small curvature ratio and the Reynolds number. The results indicate that the curvature of the microtube leads to a skewed pattern in the distribution of the electrical double layer (EDL) potential. The EDL potential at the outer side of the bend is larger than that at the inner side of the bend. The curvature shows an inhibitory effect on the magnitude of the streaming potential field induced by the pressure-driven flow. Since the spanwise pressure gradient is dominant over the inertial force, the resulting axial velocity profile is skewed into the inner region of the curved channel. Furthermore, the flow rate in a curved microtube could be larger than that in a straight one with the same pressure gradient and shape of cross section. The asymptotic solutions of the axial velocity and flow rate in the absence of the electrokinetic effect are in agreement with the classical results for low Reynolds number flows. Remarkably, the curved geometry could be beneficial to improving the electrokinetic energy conversion (EKEC) efficiency.  相似文献   

11.
We develop a theoretical model for inclined free-surface flow over a porous surface exhibiting periodic undulations. The effect of bottom permeability is incorporated by imposing a slip condition that accounts for the nonplanar geometry of the fluid–porous medium interface. Under the assumption of shallow flow, equations of motion accounting for inertial effects are obtained by retaining in the Navier-Stokes equations terms that are up to second-order with respect to a small shallowness parameter. The explicit dependence on the cross-stream coordinate is eliminated from these equations by means of a weighted residual procedure. A linear stability analysis of the steady flow is performed in connection with Floquet–Bloch theory. The results predict that bottom permeability has a destabilizing influence on the flow. A physical explanation has been proposed which involves examining how permeability affects the steady-state flow. Conclusions are drawn regarding the combined effect of the surface tension of the fluid and the parameters describing the bottom surface including permeability, inclination and the amplitude and wavelength of the undulations that generate the bottom topography. A numerical scheme for solving the fully nonlinear governing equations is also outlined. The instability of particular steady flows is determined by conducting nonlinear simulations of the temporal evolution of the flow and comparisons are made with the predictions from the linear analysis. Comparisons with existing experimental data are also included.  相似文献   

12.
The fully developed laminar incompressible flow inside a curved duct of elliptical cross-section with four thin, internal longitudinal fins is studied using the improved CVP method. We present numerical results for the friction factor and an investigation of the effect of the fin height and the Dean number on the flow. It is found that the friction factor increases for large fins and for high Dean numbers and that in some cases, it has a strong dependence on the cross-sectional aspect ratio. The thermal results show that the heat transfer rate is enhanced by the internal fins and that it depends on the aspect ratio.  相似文献   

13.
The stability of a horizontal plane-channel flow of a dilute suspension is studied theoretically. It is shown that the mechanism of action of the sedimenting particles on the flow stability parameters is equivalent to the effect of a distributed flow stratification and is attributable to the vertical nonuniformity of the body force induced by the excess weight of the sedimenting particles. A strong dependence of the disturbance growth rate on the location of the interface between the suspension and the pure liquid is detected.  相似文献   

14.
We revisit the stability of a deformable interface that separates a fully-developed turbulent gas flow from a thin layer of laminar liquid. Although this problem has received considerable attention previously, a model that requires no fitting parameters and that uses a base-state profile that has been validated against experiments is, as yet, unavailable. Furthermore, the significance of wave-induced perturbations in turbulent stresses remains unclear. To address these outstanding issues, we investigate this problem and introduce a turbulent base-state velocity that requires specification of a flow rate or a pressure drop only; no adjustable parameters are necessary. This base state is validated extensively against available experimental data as well as the results of direct numerical simulations. In addition, the effect of perturbations in the turbulent stress distributions is investigated, and demonstrated to be small for cases wherein the liquid layer is thin. The detailed modelling of the liquid layer also elicits two unstable modes, ‘interfacial’ and ‘internal’, with the former being the more dominant of the two. We show that it is possible for interfacial roughness to reduce the growth rate of the interfacial mode in relation to that of the internal one, promoting the latter, to the status of most dangerous mode. Additionally, we introduce an approximate measure to distinguish between ‘slow’ and ‘fast’ waves, the latter being the case for ‘critical-layer’-induced instabilities; we demonstrate that for the parameter ranges studied, the large majority of the waves are ‘slow’. Finally, comparisons of our linear stability predictions are made with experimental data in terms of critical parameters for onset of wave-formation, wave speeds and wavelengths; these yield agreement within the bounds of experimental error.  相似文献   

15.
This is an analytical study on the time development of hydrodynamic dispersion of an inert species in electroosmotic flow through a rectangular channel.The objective is to determine how the channel side walls may affectthe dispersion coefficient at different instants of time.Tothis end,the generalized dispersion model,which is valid forshort and long times,is employed in the present study.Analytical expressions are derived for the convection and dispersion coefficients as functions of time,the aspect ratio ofthe channel,and the Debye-Hu¨ckel parameter representingthe thickness of the electric double layer.For transport ina channel of large aspect ratio,the dispersion may undergoseveral stages of transience.The initial,fast time development is controlled by molecular diffusion across the narrowchannel height,while the later,slower time development isgoverned by diffusion across the wider channel breadth.Fora sufficiently large aspect ratio,there can be an interludebetween these two periods during which the coefficient isnearly steady,signifying the resemblance of the transportto that in a parallel-plate channel.Given a sufficiently longtime,the dispersion coefficient will reach a fully-developedsteady value that may be several times higher than that without the side wall effects.The time scales for these periods oftransience are identified in this paper.  相似文献   

16.
In this paper, we report the results of our numerical studies on laminar mixed convection heat transfer in a circular Curved tube with a nanofluid consisting of water and 1 vol.% Al2O3. Three dimensional elliptic governing equations have been used. Two phase mixture model and control volume technique have been implemented to study flow field. Effects of the diameter of particles on the hydrodynamic and thermal parameters are investigated and discussed. Increasing the solid particles diameter decreases the Nusselt number and secondary flow, while the axial velocity augments. When the particles are in order of nano meter, increasing the diameter of particles, do not change the flow behaviors. The distribution of solid nanoparticles is uniform and constant in curved tube.  相似文献   

17.
The development of viscous flow in a curved duct under variation of the axial pressure gradient q is studied. We confine ourselves to two‐dimensional solutions of the Dean problem. Bifurcation diagrams are calculated for rectangular and elliptic cross sections of the duct. We detect a new branch of asymmetric solutions for the case of a rectangular cross section. Furthermore we compute paths of quadratic turning points and symmetry breaking bifurcation points under variation of the aspect ratio γ (γ=0.8…1.5). The computed diagrams extend the results presented by other authors. We succeed in finding two origins of the Hopf bifurcation. Making use of the Cayley transformation, we determine the stability of stationary laminar solutions in the case of a quadratic cross section. All the calculations were performed on a parallel computer with 32×32 processors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
19.
This paper presents first results of numerical simulation of turbulent free-surface flow. Simple implementation of surface capturing method is based on the variable density approach. The flow is treated as if there is only one fluid, but with variable material properties (density, viscosity). The switch in these values is done by a function resulting from the mass conservation principle. This approach simplifies the implementation of turbulence model. In this case the SST k−ω model was chosen in modification given by Hellsten.Numerical solution was carried out by finite-volume method with explicit Runge-Kutta time-integration. The artificial compressibility method was used for time-marching search for steady state solution. The whole model was tested on horizontally placed square-sectioned 90 bend, which was partially filled by the water. The main goal of this study was to demonstrate the applicability of this model and solution method for capturing the water-air interface as well as for predicting the turbulent effects in both fluids.  相似文献   

20.
A standard Galerkin finite element penalty function method is used to approximate the solution of the three-dimensional Navier–Stokes equations for steady incompressible Newtonian entrance flow in a 90° curved tube (curvature ratio δ = 1/6) for a triple of Dean numbers (κ = 41, 122 and 204). The computational results for the intermediate Dean number (κ = 122) are compared with the results of laser–Doppler velocity measurements in an equivalent experimental model. For both the axial and secondary velocity components, fair agreement between the computational and experimental results is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号