首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
With the successful operation of free‐electron lasers (FELs) as user facilities there has been a growing demand for experiments with two photon pulses with variable photon energy and time separation. A configuration of an undulator with variable‐gap control and a delaying chicane in the middle of the beamline is proposed. An injected electron beam with a transverse tilt will only yield FEL radiation for the parts which are close to the undulator axis. This allows, after re‐aligning and delaying the electron beam, a different part of the bunch to be used to produce a second FEL pulse. This method offers independent control in photon energy and delay. For the parameters of the soft X‐ray beamline Athos at the SwissFEL facility the photon energy tuning range is a factor of five with an adjustable delay between the two pulses from ?50 to 950 fs.  相似文献   

2.
Free‐electron lasers (FELs) generate femtosecond XUV and X‐ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.  相似文献   

3.
BioCARS, a NIH‐supported national user facility for macromolecular time‐resolved X‐ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator‐based beamline optimized for single‐shot laser‐pump X‐ray‐probe measurements with time resolution as short as 100 ps. The source consists of two in‐line undulators with periods of 23 and 27 mm that together provide high‐flux pink‐beam capability at 12 keV as well as first‐harmonic coverage from 6.8 to 19 keV. A high‐heat‐load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick–Baez mirror system capable of focusing the X‐ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high‐speed chopper isolates single X‐ray pulses at 1 kHz in both hybrid and 24‐bunch modes of the APS storage ring. In hybrid mode each isolated X‐ray pulse delivers up to ~4 × 1010 photons to the sample, thereby achieving a time‐averaged flux approaching that of fourth‐generation X‐FEL sources. A new high‐power picosecond laser system delivers pulses tunable over the wavelength range 450–2000 nm. These pulses are synchronized to the storage‐ring RF clock with long‐term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.  相似文献   

4.
X‐Treme is a soft X‐ray beamline recently built in the Swiss Light Source at the Paul Scherrer Institut in collaboration with École Polytechnique Fédérale de Lausanne. The beamline is dedicated to polarization‐dependent X‐ray absorption spectroscopy at high magnetic fields and low temperature. The source is an elliptically polarizing undulator. The end‐station has a superconducting 7 T–2 T vector magnet, with sample temperature down to 2 K and is equipped with an in situ sample preparation system for surface science. The beamline commissioning measurements, which show a resolving power of 8000 and a maximum flux at the sample of 4.7 × 1012 photons s?1, are presented. Scientific examples showing X‐ray magnetic circular and X‐ray magnetic linear dichroism measurements are also presented.  相似文献   

5.
A phase‐merging enhanced harmonic generation free‐electron laser (FEL) was proposed to increase the harmonic conversion efficiency of seeded FELs and promote the radiation wavelength towards the X‐ray spectral region. However, this requires a specially designed transverse gradient undulator (TGU) as the modulator to couple the transverse and longitudinal phase space of the electron beam. In this paper, the generation of the phase‐merging effect is explored using the natural field gradient of a normal planar undulator. In this method, a vertical dispersion on the electron beam is introduced and then the dispersed beam travels through a normal modulator in a vertical off‐axis orbit where the vertical field gradient is selected properly in terms of the vertical dispersion strength and modulation amplitude. The phase‐merging effect will be generated after passing through the dispersive chicane. Theoretical analysis and numerical simulations for a seeded soft X‐ray FEL based on parameters of the Shanghai Soft X‐ray FEL project are presented. Compared with a TGU modulator, using the natural gradient of a normal planar modulator has the distinct advantage that the gradient can be conveniently tuned in quite a large range by adjusting the beam orbit offset.  相似文献   

6.
Vacuum‐ultraviolet radiation delivered by bending‐magnet sources is used at numerous synchrotron radiation facilities worldwide. As bending‐magnet radiation is inherently much less collimated compared with undulator sources, the generation of high‐quality intense bending‐magnet vacuum‐ultraviolet photon beams is extremely demanding in terms of the optical layout due to the necessary larger collection apertures. In this article, an optimized optical layout which takes into account both the optical and electron beam properties is proposed. This layout delivers an improved beam emittance of over one order of magnitude compared with existing vacuum‐ultraviolet bending‐magnet beamlines that, up to now, do not take into account electron beam effects. The arrangement is made of two dedicated mirrors, a cylindrical and a cone‐shaped one, that focus independently both the horizontal and the vertical emission of a bending‐magnet source, respectively, and has been already successfully applied in the construction of the infrared beamline at the Brazilian synchrotron. Using this scheme, two vacuum‐ultraviolet beamline designs based on a SOLEIL synchrotron bending‐magnet source are proposed and analysed. They would be useful for future upgrades to the DISCO beamline at SOLEIL and could be readily implemented at other synchrotron radiation facilities.  相似文献   

7.
The Hard X‐ray Photo‐Electron Spectroscopy (HAXPES) beamline (PES‐BL14), installed at the 1.5 T bending‐magnet port at the Indian synchrotron (Indus‐2), is now available to users. The beamline can be used for X‐ray photo‐emission electron spectroscopy measurements on solid samples. The PES beamline has an excitation energy range from 3 keV to 15 keV for increased bulk sensitivity. An in‐house‐developed double‐crystal monochromator [Si (111)] and a platinum‐coated X‐ray mirror are used for the beam monochromatization and manipulation, respectively. This beamline is equipped with a high‐energy (up to 15 keV) high‐resolution (meV) hemispherical analyzer with a microchannel plate and CCD detector system with SpecsLab Prodigy and CasaXPS software. Additional user facilities include a thin‐film laboratory for sample preparation and a workstation for on‐site data processing. In this article, the design details of the beamline, other facilities and some recent scientific results are described.  相似文献   

8.
A microprobe system has been installed on the nanoprobe/XAFS beamline (BL8C) at PLS‐II, South Korea. Owing to the reproducible switch of the gap of the in‐vacuum undulator (IVU), the intense and brilliant hard X‐ray beam of an IVU can be used in X‐ray fluorescence (XRF) and X‐ray absorption fine‐structure (XAFS) experiments. For high‐spatial‐resolution microprobe experiments a Kirkpatrick–Baez mirror system has been used to focus the millimeter‐sized X‐ray beam to a micrometer‐sized beam. The performance of this system was examined by a combination of micro‐XRF imaging and micro‐XAFS of a beetle wing. These results indicate that the microprobe system of the BL8C can be used to obtain the distributions of trace elements and chemical and structural information of complex materials.  相似文献   

9.
In this paper the choice between bending magnets and insertion devices as sample illuminators for a hard X‐ray full‐field microscope is investigated. An optimized bending‐magnet beamline design is presented. Its imaging speed is very competitive with the performance of similar microscopes installed currently at insertion‐device beamlines. The fact that imaging X‐ray microscopes can accept a large phase space makes them very well suited to the output characteristics of bending magnets which are often a plentiful and paid‐for resource. There exist opportunities at all synchrotron light sources to take advantage of this finding to build bending‐magnet beamlines that are dedicated to transmission X‐ray microscope facilities. It is expected that demand for such facilities will increase as three‐dimensional tomography becomes routine and advanced techniques such as mosaic tomography and XANES tomography (taking three‐dimensional tomograms at different energies to highlight elemental and chemical differences) become more widespread.  相似文献   

10.
A pre‐focused X‐ray beam at 12 keV and 9 keV has been used to illuminate a single‐bounce capillary in order to generate a high‐flux X‐ray microbeam. The BioCAT undulator X‐ray beamline 18ID at the Advanced Photon Source was used to generate the pre‐focused beam containing 1.2 × 1013 photons s?1 using a sagittal‐focusing double‐crystal monochromator and a bimorph mirror. The capillary entrance was aligned with the focal point of the pre‐focused beam in order to accept the full flux of the undulator beam. Two alignment configurations were tested: (i) where the center of the capillary was aligned with the pre‐focused beam (`in‐line') and (ii) where one side of the capillary was aligned with the beam (`off‐line'). The latter arrangement delivered more flux (3.3 × 1012 photons s?1) and smaller spot sizes (≤10 µm FWHM in both directions) for a photon flux density of 4.2 × 1010 photons s?1µm?2. The combination of the beamline main optics with a large‐working‐distance (approximately 24 mm) capillary used in this experiment makes it suitable for many microprobe fluorescence applications that require a micrometer‐size X‐ray beam and high flux density. These features are advantageous for biological samples, where typical metal concentrations are in the range of a few ng cm?2. Micro‐XANES experiments are also feasible using this combined optical arrangement.  相似文献   

11.
The design and performance of a novel ultra‐high‐vacuum‐compatible artificial channel‐cut monochromator that has been commissioned at undulator beamline 8‐ID‐I at the Advanced Photon Source are presented. Details of the mechanical and optical design, control system implementation and performance of the new device are given. The monochromator was designed to meet the challenging stability and optical requirements of the X‐ray photon correlation spectroscopy program hosted at this beamline. In particular, the device incorporates a novel in‐vacuum sine‐bar drive mechanism for the combined pitch motion of the two crystals and a flexure‐based high‐stiffness weak‐link mechanism for fine‐tuning the pitch and roll of the second crystal relative to the first crystal. The monochromator delivers an exceptionally uniform and stable beam and thereby improved brilliance preservation.  相似文献   

12.
Carbon contamination of optics is a serious issue in all soft X‐ray beamlines because it decreases the quality of experimental data, such as near‐edge X‐ray absorption fine structure, resonant photoemission and resonant soft X‐ray emission spectra in the carbon K‐edge region. Here an in situ method involving the use of oxygen activated by zeroth‐order synchrotron radiation was used to clean the optics in a vacuum ultraviolet and soft X‐ray undulator beamline, BL‐13A at the Photon Factory in Tsukuba, Japan. The carbon contamination of the optics was removed by exposing them to oxygen at a pressure of 10?1–10?4 Pa for 17–20 h and simultaneously irradiating them with zeroth‐order synchrotron radiation. After the cleaning, the decrease in the photon intensity in the carbon K‐edge region reduced to 2–5%. The base pressure of the beamline recovered to 10?7–10?8 Pa in one day without baking. The beamline can be used without additional commissioning.  相似文献   

13.
The layout and the characteristics of the hard X‐ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel‐cut monochromator and is dedicated to X‐ray studies in the spectral range from ~4 keV to ~16 keV photon energy. There are two different endstations available. While X‐ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six‐axis kappa diffractometer is installed for X‐ray scattering and reflectivity experiments. Different detector set‐ups are integrated into the beamline control software, i.e. gas‐filled ionization chambers, different photodiodes, as well as a Pilatus 2D‐detector are permanently available. The performance of the beamline is illustrated by high‐quality X‐ray absorption spectra from several reference compounds. First applications include temperature‐dependent EXAFS experiments from liquid‐nitrogen temperature in a bath cryostat up to ~660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments are presented.  相似文献   

14.
AR‐NW12A is an in‐vacuum undulator beamline optimized for high‐throughput macromolecular crystallography experiments as one of the five macromolecular crystallography (MX) beamlines at the Photon Factory. This report provides details of the beamline design, covering its optical specifications, hardware set‐up, control software, and the latest developments for MX experiments. The experimental environment presents state‐of‐the‐art instrumentation for high‐throughput projects with a high‐precision goniometer with an adaptable goniometer head, and a UV‐light sample visualization system. Combined with an efficient automounting robot modified from the SSRL SAM system, a remote control system enables fully automated and remote‐access X‐ray diffraction experiments.  相似文献   

15.
A practical method for operating existing undulator synchrotron beamlines at photon energies considerably higher than their standard operating range is described and applied at beamline 19‐ID of the Structural Biology Center at the Advanced Photon Source enabling operation at 30 keV. Adjustments to the undulator spectrum were critical to enhance the 30 keV flux while reducing the lower‐ and higher‐energy harmonic contamination. A Pd‐coated mirror and Al attenuators acted as effective low‐ and high‐bandpass filters. The resulting flux at 30 keV, although significantly lower than with X‐ray optics designed and optimized for this energy, allowed for accurate data collection on crystals of the small protein crambin to 0.38 Å resolution.  相似文献   

16.
A scanning transmission X‐ray microscope is operational at the 10A beamline at the Pohang Light Source. The 10A beamline provides soft X‐rays in the photon energy range 100–2000 eV using an elliptically polarized undulator. The practically usable photon energy range of the scanning transmission X‐ray microscopy (STXM) setup is from ~150 to ~1600 eV. With a zone plate of 25 nm outermost zone width, the diffraction‐limited space resolution, ~30 nm, is achieved in the photon energy range up to ~850 eV. In transmission mode for thin samples, STXM provides the element, chemical state and magnetic moment specific distributions, based on absorption spectroscopy. A soft X‐ray fluorescence measurement setup has been implemented in order to provide the elemental distribution of thicker samples as well as chemical state information with a space resolution of ~50 nm. A ptychography setup has been implemented in order to improve the space resolution down to 10 nm. Hardware setups and application activities of the STXM are presented.  相似文献   

17.
The protein crystallography beamline (PX‐BL21), installed at the 1.5 T bending‐magnet port at the Indian synchrotron (Indus‐2), is now available to users. The beamline can be used for X‐ray diffraction measurements on a single crystal of macromolecules such as proteins, nucleic acids and their complexes. PX‐BL21 has a working energy range of 5–20 keV for accessing the absorption edges of heavy elements commonly used for phasing. A double‐crystal monochromator [Si(111) and Si(220)] and a pair of rhodium‐coated X‐ray mirrors are used for beam monochromatization and manipulation, respectively. This beamline is equipped with a single‐axis goniometer, Rayonix MX225 CCD detector, fluorescence detector, cryogenic sample cooler and automated sample changer. Additional user facilities include a workstation for on‐site data processing and a biochemistry laboratory for sample preparation. In this article the beamline, other facilities and some recent scientific results are briefly described.  相似文献   

18.
Soft‐X‐ray angle‐resolved photoelectron spectroscopy (ARPES) with photon energies around 1 keV combines the momentum space resolution with increasing probing depth. The concepts and technical realisation of the new soft‐X‐ray ARPES endstation at the ADRESS beamline of SLS are described. The experimental geometry of the endstation is characterized by grazing X‐ray incidence on the sample to increase the photoyield and vertical orientation of the measurement plane. The vacuum chambers adopt a radial layout allowing most efficient sample transfer. High accuracy of the angular resolution is ensured by alignment strategies focused on precise matching of the X‐ray beam and optical axis of the analyzer. The high photon flux of up to 1013 photons s?1 (0.01% bandwidth)?1 delivered by the beamline combined with the optimized experimental geometry break through the dramatic loss of the valence band photoexcitation cross section at soft‐X‐ray energies. ARPES images with energy resolution up to a few tens of meV are typically acquired on the time scale of minutes. A few application examples illustrate the power of our advanced soft‐X‐ray ARPES instrumentation to explore the electronic structure of bulk crystals with resolution in three‐dimensional momentum, access buried heterostructures and study elemental composition of the valence states using resonant excitation.  相似文献   

19.
20.
At the vacuum ultraviolet (VUV) free electron laser in Hamburg (FLASH) an infrared (IR) beamline is being built to allow novel pump-and-probe experiments combining coherent IR pulses with the FEL radiation in the VUV spectral range. It will provide useful IR radiation generated by a purpose built undulator over the wavelength range from 200 μm to 10 μm and possibly even shorter. The commissioning of the beamline has started this summer and first light will be delivered to the experimental hall by autumn 2007. Another important application of the beamline will be electron diagnostics of the longitudinal charge distribution of the electron bunches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号