首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Two‐wave symmetric Bragg‐case dynamical diffraction of a plane X‐ray wave in a crystal with third‐order nonlinear response to the electric field is considered theoretically. For certain diffraction conditions for a non‐absorbing perfect semi‐infinite crystal in the total reflection region an analytical solution is found. For the width and for the center of the total reflection region expressions on the intensity of the incidence wave are established. It is shown that in the nonlinear case the total reflection region exists below a maximal intensity of the incidence wave. With increasing intensity of the incidence wave the total reflection region's center moves to low angles and the width decreases. Using numerical calculations for an absorbing semi‐infinite crystal, the behavior of the reflected wave as a function of the intensity of the incidence wave and of the deviation parameter from the Bragg condition is analyzed. The results of numerical calculations are compared with the obtained analytical solution.  相似文献   

2.
This work reports a harmonic‐rejection scheme based on the combination of Si(111) monochromator and Si(220) harmonic‐rejection crystal optics. This approach is of importance to a wide range of X‐ray applications in all three major branches of modern X‐ray science (scattering, spectroscopy, imaging) based at major facilities, and especially relevant to the capabilities offered by the new diffraction‐limited storage rings. It was demonstrated both theoretically and experimentally that, when used with a synchrotron undulator source over a broad range of X‐ray energies of interest, the harmonic‐rejection crystals transmit the incident harmonic X‐rays on the order of 10?6. Considering the flux ratio of fundamental and harmonic X‐rays in the incident beam, this scheme achieves a total flux ratio of harmonic radiation to fundamental radiation on the order of 10?10. The spatial coherence of the undulator beam is preserved in the transmitted fundamental radiation while the harmonic radiation is suppressed, making this scheme suitable not only for current third‐generation synchrotron sources but also for the new diffraction‐limited storage rings where coherence preservation is an even higher priority. Compared with conventional harmonic‐rejection mirrors, where coherence is poorly preserved and harmonic rejection is less effective, this scheme has the added advantage of lower cost and footprint. This approach has been successfully utilized at the ultra‐small‐angle X‐ray scattering instrument at the Advanced Photon Source for scattering, imaging and coherent X‐ray photon correlation spectroscopy experiments. With minor modification, the harmonic rejection can be improved by a further five orders of magnitude, enabling even more performance capabilities.  相似文献   

3.
A new system of slits called `spiderweb slits' have been developed for depth‐resolved powder or polycrystalline X‐ray diffraction measurements. The slits act on diffracted X‐rays to select a particular gauge volume of sample, while absorbing diffracted X‐rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range of diffraction angles, and work for X‐ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray‐tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X‐ray Powder Diffraction beamline at the National Synchrotron Light Source II.  相似文献   

4.
Inelastic X‐ray scattering instruments in operation at third‐generation synchrotron radiation facilities are based on backreflections from perfect silicon crystals. This concept reaches back to the very beginnings of high‐energy‐resolution X‐ray spectroscopy and has several advantages but also some inherent drawbacks. In this paper an alternate path is investigated using a different concept, the `M4 instrument'. It consists of a combination of two in‐line high‐resolution monochromators, focusing mirrors and collimating mirrors. Design choices and performance estimates in comparison with existing conventional inelastic X‐ray scattering instruments are presented.  相似文献   

5.
Plebański's class of nonlinear vacuum electrodynamics is considered, which is for several reasons of interest at the present time. In particular, the question is answered under which circumstances Maxwell's original field equations are recovered approximately and which ‘post‐Maxwellian’ effects could arise. To this end, a weak field approximation method is developed, allowing to calculate ‘post‐Maxwellian’ corrections up to Nth order. In some respect, this is analogue of determining ‘post‐Newtonian’ corrections from relativistic mechanics by a low velocity approximation. As a result, we got a series of linear field equations that can be solved order by order. In this context, the solutions of the lower orders occur as source terms inside the higher order field equations and represent a ‘post‐Maxwellian’ self‐interaction of the electromagnetic field, which increases order by order. It becomes apparent that one has to distinguish between problems with and without external source terms because without sources also high frequency solutions can be approximately described by Maxwell's original equations. The higher order approximations, which describe ‘post‐Maxwellian’ effects, can give rise to experimental tests of Plebańksi's class. Finally, two boundary value problems are discussed to have examples at hand.  相似文献   

6.
The efficiency of high‐resolution pixel detectors for hard X‐rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron‐based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency: a novel scintillator based on doped Lu2SiO5 (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO‐based thin crystal together with the high stopping power of the material allows for high‐performance indirect X‐ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible‐light and the afterglow are investigated. A set‐up to study the effect of the thin‐film scintillator's temperature on its conversion efficiency is described as well. It delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X‐ray imaging systems based on different diffraction‐limited visible‐light optics and CCD cameras using among others LSO‐based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high‐resolution computed tomography for life sciences.  相似文献   

7.
A confocal full‐field X‐ray microscope has been developed for use as a novel three‐dimensional X‐ray imaging method. The system consists of an X‐ray illuminating `sheet‐beam' whose beam shape is micrified only in one dimension, and an X‐ray full‐field microscope whose optical axis is normal to the illuminating sheet beam. An arbitral cross‐sectional region of the object is irradiated by the sheet‐beam, and secondary X‐ray emission such as fluorescent X‐rays from this region is imaged simultaneously using the full‐field microscope. This system enables a virtual sliced image of a specimen to be obtained as a two‐dimensional magnified image, and three‐dimensional observation is available only by a linear translation of the object along the optical axis of the full‐field microscope. A feasibility test has been carried out at beamline 37XU of SPring‐8. Observation of the three‐dimensional distribution of metallic inclusions in an artificial diamond was performed.  相似文献   

8.
Silicon saw‐tooth refractive lenses have been in successful use for vertical focusing and collimation of high‐energy X‐rays (50–100 keV) at the 1‐ID undulator beamline of the Advanced Photon Source. In addition to presenting an effectively parabolic thickness profile, as required for aberration‐free refractive optics, these devices allow high transmission and continuous tunability in photon energy and focal length. Furthermore, the use of a single‐crystal material (i.e. Si) minimizes small‐angle scattering background. The focusing performance of such saw‐tooth lenses, used in conjunction with the 1‐ID beamline's bent double‐Laue monochromator, is presented for both short (~1:0.02) and long (~1:0.6) focal‐length geometries, giving line‐foci in the 2 µm–25 µm width range with 81 keV X‐rays. In addition, a compound focusing scheme was tested whereby the radiation intercepted by a distant short‐focal‐length lens is increased by having it receive a collimated beam from a nearer (upstream) lens. The collimation capabilities of Si saw‐tooth lenses are also exploited to deliver enhanced throughput of a subsequently placed small‐angular‐acceptance high‐energy‐resolution post‐monochromator in the 50–80 keV range. The successful use of such lenses in all these configurations establishes an important detail, that the pre‐monochromator, despite being comprised of vertically reflecting bent Laue geometry crystals, can be brilliance‐preserving to a very high degree.  相似文献   

9.
A fully automated procedure for detecting and centering protein crystals in the X‐ray beam of a macromolecular crystallography beamline has been developed. A cryo‐loop centering routine that analyzes video images with an edge detection algorithm is first used to determine the dimensions of the loop holding the sample; then low‐dose X‐rays are used to record diffraction images in a grid over the edge and face plane of the loop. A three‐dimensional profile of the crystal based on the number of diffraction spots in each image is constructed. The derived center of mass is then used to align the crystal to the X‐ray beam. Typical samples can be accurately aligned in ~2–3 min. Because the procedure is based on the number of `good' spots as determined by the program Spotfinder, the best diffracting part of the crystal is aligned to the X‐ray beam.  相似文献   

10.
Crystal centering is a key step in macromolecular X‐ray crystallography experiments. A new method using image‐processing and machine‐vision techniques allows the centering of small crystals in the X‐ray beam. This method positions crystals even when the loop is initially out of the camera's field of view and adapts to the difficulty of the experiment. The process has been tested on many diverse crystals with a 93% success rate when compared with manual centering.  相似文献   

11.
An exact invariant is derived for n‐degree‐of‐freedom non‐relativistic Hamiltonian systems with general time‐dependent potentials. To work out the invariant, an infinitesimalcanonical transformation is performed in the framework of the extended phase‐space. We apply this approach to derive the invariant for a specific class of Hamiltonian systems. For the considered class of Hamiltonian systems, the invariant is obtained equivalently performing in the extended phase‐space a finitecanonical transformation of the initially time‐dependent Hamiltonian to a time‐independent one. It is furthermore shown that the invariant can be expressed as an integral of an energy balance equation. The invariant itself contains a time‐dependent auxiliary function ξ (t) that represents a solution of a linear third‐order differential equation, referred to as the auxiliary equation. The coefficients of the auxiliary equation depend in general on the explicitly known configuration space trajectory defined by the system's time evolution. This complexity of the auxiliary equation reflects the generally involved phase‐space symmetry associated with the conserved quantity of a time‐dependent non‐linear Hamiltonian system. Our results are applied to three examples of time‐dependent damped and undamped oscillators. The known invariants for time‐dependent and time‐independent harmonic oscillators are shown to follow directly from our generalized formulation.  相似文献   

12.
Recent research progress using X‐ray cryo‐crystallography with the photon beams from third‐generation synchrotron sources has resulted in recognition that this intense radiation commonly damages protein samples even when they are held at 100 K. Other structural biologists examining thin protein crystals or single particle specimens encounter similar radiation damage problems during electron diffraction and imaging, but have developed some effective countermeasures. The aim of this concise review is to examine whether analogous approaches can be utilized to alleviate the X‐ray radiation damage problem in synchrotron macromolecular crystallography. The critical discussion of this question is preceded by presentation of background material on modern technical procedures with electron beam instruments using 300–400 kV accelerating voltage, low‐dose exposures for data recording, and protection of protein specimens by cryogenic cooling; these practical approaches to dealing with electron radiation damage currently permit best resolution levels of 6 Å (0.6 nm) for single particle specimens, and of 1.9 Å for two‐dimensional membrane protein crystals. Final determination of the potential effectiveness and practical value of using such new or unconventional ideas will necessitate showing, by experimental testing, that these produce significantly improved protection of three‐dimensional protein crystals during synchrotron X‐ray diffraction.  相似文献   

13.
Experiments using a simple X‐ray interferometer to measure the degree of spatial coherence of hard X‐rays are reported. A monolithic Fresnel bimirror is used at small incidence angles to investigate synchrotron radiation in the energy interval 5–50 keV with monochromatic and white beam. The experimental set‐up was equivalent to a Young's double‐slit experiment for hard X‐rays with slit dimensions in the micrometre range. From the high‐contrast interference pattern the degree of coherence was determined.  相似文献   

14.
Quadratic nonlinear photonic crystals are materials in which the second order susceptibility χ(2) is spatially modulated while the linear susceptibility remains constant. These structures are significantly different than the more common photonic crystals, in which the linear susceptibility is modulated. Nonlinear processes in nonlinear photonic crystals are governed by the phase matching requirements, which are determined by the reciprocal lattice of these crystals. Therefore, the modulation of the nonlinear susceptibility enables to engineer the spatial and spectral response in various three‐wave mixing processes. It enables to support the efficient generation of new optical frequencies at multiple directions. We analyze three wave mixing processes in nonlinear photonic crystals in which the modulation is either periodic, quasi‐periodic, radially symmetric or even random. We discuss both one‐dimensional and two‐dimensional modulations. In addition to harmonic generations, we outline several new possibilities for all‐optical control of the spatial and polarization properties of optical beams in specially designed nonlinear photonic crystals.  相似文献   

15.
A method is presented to simplify Bragg coherent X‐ray diffraction imaging studies of complex heterogeneous crystalline materials with a two‐stage screening/imaging process that utilizes polychromatic and monochromatic coherent X‐rays and is compatible with in situ sample environments. Coherent white‐beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three‐dimensional reciprocal‐space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.  相似文献   

16.
The possibility of splitting a thin (e.g. undulator) X‐ray beam based on diffraction–refraction effects is discussed. The beam is diffracted from a crystal whose diffracting surface has the shape of a roof with the ridge lying in the plane of diffraction. The crystal is cut asymmetrically. One half of the beam impinges on the left‐hand part of the roof and the other half impinges on the right‐hand side of the roof. Owing to refraction the left part of the beam is deviated to the left whereas the right part is deviated to the right. The device proposed consists of two channel‐cut crystals with roof‐like diffraction surfaces; the crystals are set in a dispersive position. The separation of the beams after splitting is calculated at a distance of 10 m from the crystals for various asymmetry and inclination angles. It is shown that such a splitting may be utilized for long beamlines. Advantages and disadvantages of this method are discussed.  相似文献   

17.
Liquid jets are of interest, both for their industrial relevance and for scientific applications (more important, in particular for X‐rays, after the advent of free‐electron lasers that require liquid jets as sample carrier). Instability mechanisms have been described theoretically and by numerical simulation, but confirmed by few experimental techniques. In fact, these are mainly based on cameras, which is limited by the imaging resolution, and on light scattering, which is hindered by absorption, reflection, Mie scattering and multiple scattering due to complex air/liquid interfaces during jet break‐up. In this communication it is demonstrated that synchrotron small‐angle X‐ray scattering (SAXS) can give quantitative information on liquid jet dynamics at the nanoscale, by detecting time‐dependent morphology and break‐up length. Jets ejected from circular tubes of different diameters (100–450 µm) and speeds (0.7–21 m s?1) have been explored to cover the Rayleigh and first wind‐induced regimes. Various solvents (water, ethanol, 2‐propanol) and their mixtures have been examined. The determination of the liquid jet behaviour becomes essential, as it provides background data in subsequent studies of chemical and biological reactions using SAXS or X‐ray diffraction based on synchrotron radiation and free‐electron lasers.  相似文献   

18.
A novel X‐ray Bragg optics is proposed for variable‐magnification of an X‐ray beam. This X‐ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X‐ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X‐ray diffraction. The feasibility of the variable‐magnification X‐ray Bragg optics was verified at the vertical‐wiggler beamline BL‐14B of the Photon Factory. For X‐ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M≥ 1.0), X‐ray images of a nylon mesh were observed with an air‐cooled X‐ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption‐contrast but also edge‐contrast due to Fresnel diffraction was observed in the magnified images.  相似文献   

19.
The progress of tomographic coherent diffractive imaging with hard X‐rays at the ID10 beamline of the European Synchrotron Radiation Facility is presented. The performance of the instrument is demonstrated by imaging a cluster of Fe2P magnetic nanorods at 59 nm 3D resolution by phasing a diffraction volume measured at 8 keV photon energy. The result obtained shows progress in three‐dimensional imaging of non‐crystalline samples in air with hard X‐rays.  相似文献   

20.
An understanding of the mechanical response of modern engineering alloys to complex loading conditions is essential for the design of load‐bearing components in high‐performance safety‐critical aerospace applications. A detailed knowledge of how material behaviour is modified by fatigue and the ability to predict failure reliably are vital for enhanced component performance. Unlike macroscopic bulk properties (e.g. stiffness, yield stress, etc.) that depend on the average behaviour of many grains, material failure is governed by `weakest link'‐type mechanisms. It is strongly dependent on the anisotropic single‐crystal elastic–plastic behaviour, local morphology and microstructure, and grain‐to‐grain interactions. For the development and validation of models that capture these complex phenomena, the ability to probe deformation behaviour at the micro‐scale is key. The diffraction of highly penetrating synchrotron X‐rays is well suited to this purpose and micro‐beam Laue diffraction is a particularly powerful tool that has emerged in recent years. Typically it uses photon energies of 5–25 keV, limiting penetration into the material, so that only thin samples or near‐surface regions can be studied. In this paper the development of high‐energy transmission Laue (HETL) micro‐beam X‐ray diffraction is described, extending the micro‐beam Laue technique to significantly higher photon energies (50–150 keV). It allows the probing of thicker sample sections, with the potential for grain‐level characterization of real engineering components. The new HETL technique is used to study the deformation behaviour of individual grains in a large‐grained polycrystalline nickel sample during in situ tensile loading. Refinement of the Laue diffraction patterns yields lattice orientations and qualitative information about elastic strains. After deformation, bands of high lattice misorientation can be identified in the sample. Orientation spread within individual scattering volumes is studied using a pattern‐matching approach. The results highlight the inability of a simple Schmid‐factor model to capture the behaviour of individual grains and illustrate the need for complementary mechanical modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号