首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The simultaneous and active feedback stabilization of X‐ray beam position and monochromatic beam flux during EXAFS scans at the titanium K‐edge as produced by a double‐crystal monochromator beamline is reported. The feedback is generated using two independent feedback loops using separate beam flux and position measurements. The flux is stabilized using a fast extremum‐searching algorithm that is insensitive to changes in the synchrotron ring current and energy‐dependent monochromator output. Corrections of beam height are made using an innovative transmissive beam position monitor instrument. The efficacy of the feedback stabilization method is demonstrated by comparing the measurements of EXAFS spectra on inhomogeneous diluted Ti‐containing samples with and without feedback applied.  相似文献   

2.
Micro‐focusing optical devices at synchrotron beamlines usually have a limited acceptance, but more flux can be intercepted if such optics are used to focus secondary sources created by the primary optics. Flux throughput can be maximized by placing the secondary focusing optics close to or exactly at the secondary source position. However, standard methods of beamline optics analysis, such as the lens equation or matching the mirror surface to an ellipse, work poorly when the source‐to‐optics distance is very short. In this paper the general characteristics of the focusing of beams with Gaussian profiles by a `thin lens' are analysed under the paraxial approximation in phase space, concluding that the focusing of a beam with a short source‐to‐optics distance is distinct from imaging the source; slope errors are successfully included in all the formulas so that they can be used to calculate beamline focusing with good accuracy. A method is also introduced to use the thin‐lens result to analyse the micro‐focusing produced by an elliptically bent trapezoid‐shaped Kirkpatrick–Baez mirror. The results of this analysis are in good agreement with ray‐tracing simulations and are confirmed by the experimental results of the secondary focusing at the 18‐ID Bio‐CAT beamline (at the APS). The result of secondary focusing carried out at 18‐ID using a single‐bounce capillary can also be explained using this phase‐space analysis. A discussion of the secondary focusing results is presented at the end of this paper.  相似文献   

3.
The resonant scattering and diffraction beamline P09 at PETRA III is designed for X‐ray experiments requiring small beams, energy tunability, variable polarization and high photon flux. It is highly flexible in terms of beam size and offers full higher harmonic suppression. A state‐of‐the‐art double phase‐retarder set‐up provides variable linear or circular polarization. A high‐precision Psi‐diffractometer and a heavy‐load diffractometer in horizontal Psi‐geometry allow the accommodation of a wide variety of sample environments. A 14 T cryo‐magnet is available for scattering experiments in magnetic fields.  相似文献   

4.
A pre‐focused X‐ray beam at 12 keV and 9 keV has been used to illuminate a single‐bounce capillary in order to generate a high‐flux X‐ray microbeam. The BioCAT undulator X‐ray beamline 18ID at the Advanced Photon Source was used to generate the pre‐focused beam containing 1.2 × 1013 photons s?1 using a sagittal‐focusing double‐crystal monochromator and a bimorph mirror. The capillary entrance was aligned with the focal point of the pre‐focused beam in order to accept the full flux of the undulator beam. Two alignment configurations were tested: (i) where the center of the capillary was aligned with the pre‐focused beam (`in‐line') and (ii) where one side of the capillary was aligned with the beam (`off‐line'). The latter arrangement delivered more flux (3.3 × 1012 photons s?1) and smaller spot sizes (≤10 µm FWHM in both directions) for a photon flux density of 4.2 × 1010 photons s?1µm?2. The combination of the beamline main optics with a large‐working‐distance (approximately 24 mm) capillary used in this experiment makes it suitable for many microprobe fluorescence applications that require a micrometer‐size X‐ray beam and high flux density. These features are advantageous for biological samples, where typical metal concentrations are in the range of a few ng cm?2. Micro‐XANES experiments are also feasible using this combined optical arrangement.  相似文献   

5.
Microbeam radiation therapy (MRT) is a synchrotron‐based radiotherapy modality that uses high‐intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X‐ray optics and ray‐tracing libraries. The code was benchmarked by simulating dose profiles in water‐equivalent phantoms subject to irradiation by broad‐beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water‐equivalent phantoms subject to broad‐beam irradiation was also performed. Good agreement between codes was observed, with the exception of out‐of‐field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out‐of‐field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo‐based independent verification tool for treatment planning in MRT.  相似文献   

6.
7.
The X‐ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi‐purpose high‐energy X‐ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double‐Laue crystal monochromator to provide X‐rays over a large energy range (30–70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi‐lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.  相似文献   

8.
The layout and the optical performance of the SGM branch of the D09 bending‐magnet beamline, under construction at SESAME, are presented. The beamline is based on the Dragon‐type design and delivers photons over the spectral range 15–250 eV. One fixed entrance slit and a movable exit slit are used. The performance of the beamline has been characterized by calculating the mirror reflectivities and the grating efficiencies. The flux and resolution were calculated by ray‐tracing using SHADOW. The grating diffraction efficiencies were calculated using the GRADIF code. The results and the overall shapes of the predicted curves are in reasonable agreement with those obtained using an analytical formula.  相似文献   

9.
An energy‐dispersive X‐ray absorption spectroscopy beamline mainly dedicated to X‐ray magnetic circular dichroism (XMCD) and material science under extreme conditions has been implemented in a bending‐magnet port at the Brazilian Synchrotron Light Laboratory. Here the beamline technical characteristics are described, including the most important aspects of the mechanics, optical elements and detection set‐up. The beamline performance is then illustrated through two case studies on strongly correlated transition metal oxides: an XMCD insight into the modifications of the magnetic properties of Cr‐doped manganites and the structural deformation in nickel perovskites under high applied pressure.  相似文献   

10.
The IMCA‐CAT bending‐magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high‐quality multi‐ and single‐wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending‐magnet beamline achieves a flux of 8 × 1011 photons s?1 at 1 Å wavelength, at a beamline aperture of 1.5 mrad (horizontal) × 86 µrad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) δE/E = 1.5 × 10?4 (at 10 kV). The beamline operates in a dynamic range of 7.5–17.5 keV and delivers to the sample focused beam of size (FWHM) 240 µm (horizontally) × 160 µm (vertically). The performance of the 17‐BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.  相似文献   

11.
A new ultrahigh‐energy‐resolution and wide‐energy‐range soft X‐ray beamline has been designed and is under construction at the Shanghai Synchrotron Radiation Facility. The beamline has two branches: one dedicated to angle‐resolved photoemission spectroscopy (ARPES) and the other to photoelectron emission microscopy (PEEM). The two branches share the same plane‐grating monochromator, which is equipped with four variable‐line‐spacing gratings and covers the 20–2000 eV energy range. Two elliptically polarized undulators are employed to provide photons with variable polarization, linear in every inclination and circular. The expected energy resolution is approximately 10 meV at 1000 eV with a flux of more than 3 × 1010 photons s?1 at the ARPES sample positions. The refocusing of both branches is based on Kirkpatrick–Baez pairs. The expected spot sizes when using a 10 µm exit slit are 15 µm × 5 µm (horizontal × vertical FWHM) at the ARPES station and 10 µm × 5 µm (horizontal × vertical FWHM) at the PEEM station. The use of plane optical elements upstream of the exit slit, a variable‐line‐spacing grating and a pre‐mirror in the monochromator that allows the influence of the thermal deformation to be eliminated are essential for achieving the ultrahigh‐energy resolution.  相似文献   

12.
A novel X‐ray Bragg optics is proposed for variable‐magnification of an X‐ray beam. This X‐ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X‐ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X‐ray diffraction. The feasibility of the variable‐magnification X‐ray Bragg optics was verified at the vertical‐wiggler beamline BL‐14B of the Photon Factory. For X‐ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M≥ 1.0), X‐ray images of a nylon mesh were observed with an air‐cooled X‐ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption‐contrast but also edge‐contrast due to Fresnel diffraction was observed in the magnified images.  相似文献   

13.
The design and performance of the microfocus spectroscopy beamline at the Diamond Light Source are described. The beamline is based on a 27 mm‐period undulator to give an operable energy range between 2 and 20.7 keV, enabling it to cover the K‐edges of the elements from P to Mo and the L3‐edges from Sr to Pu. Micro‐X‐ray fluorescence, micro‐EXAFS and micro‐X‐ray diffraction have all been achieved on the beamline with a spot size of ~3 µm. The principal optical elements of the beamline consist of a toroid mirror, a liquid‐nitrogen‐cooled double‐crystal monochromator and a pair of bimorph Kirkpatrick–Baez mirrors. The performance of the optics is compared with theoretical values and a few of the early experimental results are summarized.  相似文献   

14.
At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small‐angle X‐ray scattering (SAXS) beamline has been installed with an in‐achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X‐ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (ΔE/E? 2 × 10?4) in the energy range 5–23 keV, or by a double Mo/B4C multilayer monochromator for 10–30 times higher flux (~1011 photons s?1) in the 6–15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of ~0.9 mm × 0.3 mm (horizontal × vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing‐incidence SAXS (GISAXS) from liquid surfaces. Two online beam‐position monitors separated by 8 m provide an efficient feedback control for an overall beam‐position stability in the 10 µm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray‐tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core‐shell quantum dots) and GISAXS from liquid surfaces.  相似文献   

15.
16.
The efficiency of the polarization scheme based on polycapillary optics and a diamond crystal polarizer was demonstrated. The scheme provides suppression of the background of scattered radiation in measuring X‐ray fluorescence spectra. A quasi‐parallel X‐ray beam with an angular divergence of 4.2 mrad was formed by a microfocus source with a copper anode and polycapillary half‐lens. Simultaneous polarization and monochromatization of radiation was obtained with a crystal of natural diamond, which was set at the diffraction reflection (113). The degree of polarization of CuKα1 spectral line and the maximum radiation flux were respectively equal to 99.86% and 5 · 106 photon/s. In the direction orthogonal to the plane of diffraction, the maximum attenuation of the background was up to 19 dB.  相似文献   

17.
X‐ray microbeams have become increasingly valuable in protein crystallography. A number of synchrotron beamlines worldwide have adapted to handling smaller and more challenging samples by providing a combination of high‐precision sample‐positioning hardware, special visible‐light optics for sample visualization, and small‐diameter X‐ray beams with low background scatter. Most commonly, X‐ray microbeams with diameters ranging from 50 µm to 1 µm are produced by Kirkpatrick and Baez mirrors in combination with defining apertures and scatter guards. A simple alternative based on single‐bounce glass monocapillary X‐ray optics is presented. The basic capillary design considerations are discussed and a practical and robust implementation that capitalizes on existing beamline hardware is presented. A design for mounting the capillary is presented which eliminates parasitic scattering and reduces deformations of the optic to a degree suitable for use on next‐generation X‐ray sources. Comparison of diffraction data statistics for microcrystals using microbeam and conventional aperture‐collimated beam shows that capillary‐focused beam can deliver significant improvement. Statistics also confirm that the annular beam profile produced by the capillary optic does not impact data quality in an observable way. Examples are given of new structures recently solved using this technology. Single‐bounce monocapillary optics can offer an attractive alternative for retrofitting existing beamlines for microcrystallography.  相似文献   

18.
There is a growing interest in the biomedical community in obtaining information concerning the distribution and local chemical environment of metals in tissues and cells. Recently, biological X‐ray fluorescence microscopy (XFM) has emerged as the tool of choice to address these questions. A fast‐scanning high‐flux X‐ray microprobe, built around a recently commissioned pair of 200 mm‐long Rh‐coated silicon Kirkpatrick–Baez mirrors, has been constructed at BioCAT beamline 18ID at the Advanced Photon Source. The new optical system delivers a flux of 1.3 × 1012 photons s?1 into a minimum focal spot size of ~3–5 µm FWHM. A set of Si drift detectors and bent Laue crystal analyzers may be used in combination with standard ionization chambers for X‐ray fluorescence measurements. BioCAT's scanning software allows fast continuous scans to be performed while acquiring and storing full multichannel analyzer spectra per pixel on‐the‐fly with minimal overhead time (<20 ms per pixel). Together, the high‐flux X‐ray microbeam and the rapid‐scanning capabilities of the BioCAT beamline allow the collection of XFM and micro X‐ray absorption spectroscopy (microXAS) measurements from as many as 48 tissue sections per day. This paper reports the commissioning results of the new instrument with representative XFM and microXAS results from tissue samples.  相似文献   

19.
X‐Treme is a soft X‐ray beamline recently built in the Swiss Light Source at the Paul Scherrer Institut in collaboration with École Polytechnique Fédérale de Lausanne. The beamline is dedicated to polarization‐dependent X‐ray absorption spectroscopy at high magnetic fields and low temperature. The source is an elliptically polarizing undulator. The end‐station has a superconducting 7 T–2 T vector magnet, with sample temperature down to 2 K and is equipped with an in situ sample preparation system for surface science. The beamline commissioning measurements, which show a resolving power of 8000 and a maximum flux at the sample of 4.7 × 1012 photons s?1, are presented. Scientific examples showing X‐ray magnetic circular and X‐ray magnetic linear dichroism measurements are also presented.  相似文献   

20.
The short wavelength of X-rays makes them an excellent choice for probing materials on the nanometer scale and for crystallography of sub-micrometer crystallites. The objective of nanofocusing optics is to produce a small, focused beam size in order to obtain the highest X-ray flux on a small sample or as a fine spatial probe. Achieving nanometer-scale focused X-ray beam sizes puts great demands on the optical elements in an X-ray beamline—the optics must balance the requirements to de-magnify the electron beam X-ray source, to reduce the diffraction-limited focus size, and to minimize the contribution to the focus of aberrations in the optics while collecting the maximum X-ray flux into the focused beam. These requirements dictate that an extreme demagnifying geometry should be employed and that high-specification optical elements must be used. Nanofocusing optics has often been added as an upgrade to existing beamlines at Diamond, extending the range of science that can be carried out. Extreme nanofocusing also forms the basis of new beamlines at Diamond, such as the nanoprobe beamline (I14), which aims to provide sub-30-nm-dimension focused X-ray beams for mapping samples at high spatial resolution. The demand for nanometer-scale diffraction-limited X-ray beams is expected to grow at Diamond and requires corresponding advances in X-ray optics to exploit the present source and future lower emittance storage ring sources; for example, the proposed Diamond II upgrade, projected to give a factor 20 emittance reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号