首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Synchrotron infrared beamlines are powerful tools on which to perform spectroscopy on microscopic length scales but require working with large bending‐magnet source apertures in order to provide intense photon beams to the experiments. Many infrared beamlines use a single toroidal‐shaped mirror to focus the source emission which generates, for large apertures, beams with significant geometrical aberrations resulting from the shape of the source and the beamline optics. In this paper, an optical layout optimized for synchrotron infrared beamlines, that removes almost totally the geometrical aberrations of the source, is presented and analyzed. This layout is already operational on the IR beamline of the Brazilian synchrotron. An infrared beamline design based on a SOLEIL bending‐magnet source is given as an example, which could be useful for future IR beamline improvements at this facility.  相似文献   

2.
DISCO, a novel low‐energy beamline covering the spectrum range from the VUV to the visible, has received its first photons at the French synchrotron SOLEIL. In this article the DISCO design and concept of three experimental stations serving research communities in biology and chemistry are described. Emphasis has been put on high flux generation and preservation of polarization at variable energy resolutions. The three experiments include a completely new approach for microscopy and atmospheric pressure experiments as well as a `classical' synchrotron radiation circular dichroism station. Preliminary tests of the optical design and technical concept have been made. Theoretical predictions of the beam have been compared with the first images produced by the first photons originating from the large‐aperture bending‐magnet source. Results are also reported concerning the cold finger used to absorb hard X‐ray radiation in the central part of the synchrotron beam and to avoid heavy thermal load on the following optics. Wavelength selection using monochromators with different gratings for each experimental set‐up as well as beam propagation and conditioning throughout the optical system are detailed. First photons comply very well with the theoretical calculations.  相似文献   

3.
In this paper the choice between bending magnets and insertion devices as sample illuminators for a hard X‐ray full‐field microscope is investigated. An optimized bending‐magnet beamline design is presented. Its imaging speed is very competitive with the performance of similar microscopes installed currently at insertion‐device beamlines. The fact that imaging X‐ray microscopes can accept a large phase space makes them very well suited to the output characteristics of bending magnets which are often a plentiful and paid‐for resource. There exist opportunities at all synchrotron light sources to take advantage of this finding to build bending‐magnet beamlines that are dedicated to transmission X‐ray microscope facilities. It is expected that demand for such facilities will increase as three‐dimensional tomography becomes routine and advanced techniques such as mosaic tomography and XANES tomography (taking three‐dimensional tomograms at different energies to highlight elemental and chemical differences) become more widespread.  相似文献   

4.
5.
A full‐field hard X‐ray imaging beamline (BL‐4) was designed, developed, installed and commissioned recently at the Indus‐2 synchrotron radiation source at RRCAT, Indore, India. The bending‐magnet beamline is operated in monochromatic and white beam mode. A variety of imaging techniques are implemented such as high‐resolution radiography, propagation‐ and analyzer‐based phase contrast imaging, real‐time imaging, absorption and phase contrast tomography etc. First experiments on propagation‐based phase contrast imaging and micro‐tomography are reported.  相似文献   

6.
The protein crystallography beamline (PX‐BL21), installed at the 1.5 T bending‐magnet port at the Indian synchrotron (Indus‐2), is now available to users. The beamline can be used for X‐ray diffraction measurements on a single crystal of macromolecules such as proteins, nucleic acids and their complexes. PX‐BL21 has a working energy range of 5–20 keV for accessing the absorption edges of heavy elements commonly used for phasing. A double‐crystal monochromator [Si(111) and Si(220)] and a pair of rhodium‐coated X‐ray mirrors are used for beam monochromatization and manipulation, respectively. This beamline is equipped with a single‐axis goniometer, Rayonix MX225 CCD detector, fluorescence detector, cryogenic sample cooler and automated sample changer. Additional user facilities include a workstation for on‐site data processing and a biochemistry laboratory for sample preparation. In this article the beamline, other facilities and some recent scientific results are briefly described.  相似文献   

7.
The Hard X‐ray Photo‐Electron Spectroscopy (HAXPES) beamline (PES‐BL14), installed at the 1.5 T bending‐magnet port at the Indian synchrotron (Indus‐2), is now available to users. The beamline can be used for X‐ray photo‐emission electron spectroscopy measurements on solid samples. The PES beamline has an excitation energy range from 3 keV to 15 keV for increased bulk sensitivity. An in‐house‐developed double‐crystal monochromator [Si (111)] and a platinum‐coated X‐ray mirror are used for the beam monochromatization and manipulation, respectively. This beamline is equipped with a high‐energy (up to 15 keV) high‐resolution (meV) hemispherical analyzer with a microchannel plate and CCD detector system with SpecsLab Prodigy and CasaXPS software. Additional user facilities include a thin‐film laboratory for sample preparation and a workstation for on‐site data processing. In this article, the design details of the beamline, other facilities and some recent scientific results are described.  相似文献   

8.
The new synchrotron‐radiation circular‐dichroism (SRCD) endstation on the UV‐visible synchrotron beamline DISCO has been commissioned at the SOLEIL synchrotron. The design has been focused on preservation of a high degree of linear polarization at high flux and moderate resolving power covering the vacuum ultraviolet to visible spectral range (125–600 nm). The beam dimensions have been set to 4 mm × 4 mm at 1 nm bandwidth for lower sample degradation. The nitrogen‐purged sample chamber fits three types of sample holders accommodating conventional round cell mounting, automated rotation of the samples, as well as a microfluidic set‐up. Automated temperature‐controlled data collection on microvolumes is now available to the biology and chemistry communities. Macromolecules including membrane proteins, soluble proteins, bio‐nanotubes, sugars, DNA and RNAs are now routinely investigated.  相似文献   

9.
Beijing Synchrotron Radiation Facility is a partly dedicated synchrotron radiation source operated in either parasitic or dedicated mode. The 3B1A beamline, extracted from a bending magnet, was originally designed as a soft x-ray beamline for submicro x-ray lithography with critical lateral size just below 1μm in 1988 and no change has been made since it was built. But later the required resolution of x-ray lithography has changed from sub-micrometre to the nanometre in the critical lateral size. This beamline can longer more meet the requirement for x-ray nano lithography and has to be modified to fit the purpose. To upgrade the design of the 3B1A beamline for x-ray nano lithography, a mirror is used to reflect and scan the x-ray beam for the nano lithography station, but the mirror's grazing angle is changed to 27.9mrad in the vertical direction, and the convex curve needs to be modified to fit the change; the tiny change of mirror scanning angle is firstly considered to improve the uniformity of the x-ray spot on the wafer by controlling the convex curve.  相似文献   

10.
Third‐generation storage rings are massively evolving due to the very compact nature of the multi‐bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration‐free beams in the near‐ to mid‐IR domain (1–30 µm) is proposed and analyzed, and which can be integrated into space‐restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo‐mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration‐free IR synchrotron sources on current and `ultimate' MBA storage rings.  相似文献   

11.
A digital autocollimator of resolution 0.1 µrad (0.02 arcsec) serves as a handy correction tool for calibrating the angular uncertainty during angular and lateral movements of gratings inside a monochromator chamber under ultra‐high vacuum. The photon energy dispersed from the extreme ultraviolet (XUV) to the soft X‐ray region of the synchrotron beamline at the Taiwan Light Source was monitored using molecular ionization spectra at high resolution as energy references that correlate with the fine angular steps during grating rotation. The angular resolution of the scanning mechanism was <0.3 µrad, which results in an energy shift of 80 meV at 867 eV. The angular uncertainties caused by the lateral movement during a grating exchange were decreased from 2.2 µrad to 0.1 µrad after correction. The proposed method provides a simple solution for on‐site beamline diagnostics of highly precise multi‐axis optical manipulating instruments at synchrotron facilities and in‐house laboratories.  相似文献   

12.
The first microbeam synchrotron X‐ray fluorescence (µ‐SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X‐ray capillary half‐lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters‐sized beam to a micrometer‐sized beam. This beamline was originally designed for deep X‐ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ‐SXRF and synchrotron X‐ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X‐ray beam (for SXPD), a fixed aperture and three gate valves. Two end‐stations incorporating optics and detectors for µ‐SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ‐SXRF station utilizes a polycapillary half‐lens for X‐ray focusing. This optic focuses X‐ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end‐station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single‐element Si (PIN) solid‐state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in‐house to generate a series of single‐column data which are compatible with available XRF data‐processing software. Finally, to test the performance of the µ‐SXRF beamline, an elemental surface profile has been obtained for a piece of ancient pottery from the Ban Chiang archaeological site, a UNESCO heritage site. It was found that the newly constructed µ‐SXRF technique was able to clearly distinguish the distribution of different elements on the specimen.  相似文献   

13.
14.
A novel experimental technique for tandem mass spectrometry and ion spectroscopy of electrosprayed ions using vacuum‐ultraviolet (VUV) synchrotron radiation is presented. Photon activation of trapped precursor ions has been performed by coupling a commercial linear quadrupole ion trap (Thermo scientific LTQ XL), equipped with the electrosprayed ions source, to the DESIRS beamline at the SOLEIL synchrotron radiation facility. The obtained results include, for the first time on biopolymers, photodetachment spectroscopy using monochromated synchrotron radiation of multi‐charged anions and the single photon ionization of large charge‐selected polycations. The high efficiency and signal‐to‐noise ratio achieved by the present set‐up open up possibilities of using synchrotron light as a new controllable activation method in tandem mass spectrometry of biopolymers and VUV‐photon spectroscopy of large biological ions.  相似文献   

15.
In order to deliver VUV (vacuum ultraviolet) photons under atmospheric pressure conditions, a differential pumping system has been built on the DISCO beamline at the SOLEIL synchrotron radiation facility. The system is made of four stages and is 840 mm long. The conductance‐limiting body has been designed to allow practicable optical alignment. VUV transmission of the system was tested under air, nitrogen, argon and neon, and photons could be delivered down to 60 nm (20 eV).  相似文献   

16.
The infrared synchrotron radiation emitted from a bending magnet of the third generation storage ring ELETTRA is studied in detail by ray-tracing techniques. Constant magnetic-field and edge infrared emissions are taken into account in the project of the bending vacuum chamber and on the beamline design. Moreover the gain in flux and brightness with respect to a conventional source of the infrared radiation are calculated and discussed.  相似文献   

17.
The new third‐generation synchrotron radiation source PETRA III located at the Deutsches Elektronen‐Synchrotron DESY in Hamburg, Germany, has been operational since the second half of 2009. PETRA III is designed to deliver hard X‐ray beams with very high brilliance. As one of the first beamlines of PETRA III the high‐resolution diffraction beamline P08 is fully operational. P08 is specialized in X‐ray scattering and diffraction experiments on solids and liquids where extreme high resolution in reciprocal space is required. The resolving power results in the high‐quality PETRA III beam and unique optical elements such as a large‐offset monochromator and beryllium lens changers. A high‐precision six‐circle diffractometer for solid samples and a specially designed liquid diffractometer are installed in the experimental hutch. Regular users have been accepted since summer 2010.  相似文献   

18.
从北京正负电子对撞机储存环弯转磁铁光源的辐射特性入手, 分析了BSRF-3B3光源及其光束线光学系统的输出特性, 分别给出各光学元件的传输效率和采用不同单色器晶体在样品处的计算结果. 为光束线设计、调试及诊断提供了理论依据. 同时也为弯转磁铁光源光束线的输出特性的计算, 提供了一个模式.  相似文献   

19.
With the successful operation of free‐electron lasers (FELs) as user facilities there has been a growing demand for experiments with two photon pulses with variable photon energy and time separation. A configuration of an undulator with variable‐gap control and a delaying chicane in the middle of the beamline is proposed. An injected electron beam with a transverse tilt will only yield FEL radiation for the parts which are close to the undulator axis. This allows, after re‐aligning and delaying the electron beam, a different part of the bunch to be used to produce a second FEL pulse. This method offers independent control in photon energy and delay. For the parameters of the soft X‐ray beamline Athos at the SwissFEL facility the photon energy tuning range is a factor of five with an adjustable delay between the two pulses from ?50 to 950 fs.  相似文献   

20.
Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump–probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera‐based two‐dimensional detection of electron energy analyzers has been replaced by a new delay‐line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two‐dimensional delay‐line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photoemitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump–probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号