首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Magnetic resonance imaging (MRI) gave images of air jets from orifices in the distributor plate of a bed of poppy seeds. Attention focused on two features:
(1) The interaction between nearby vertical jets from two, three or four orifices;
(2) Wall effects, where one or more orifices created vertical jets near the vertical wall of the cylinder containing the particle bed.
The results show that nearby jets are mutually attracted. Likewise a jet near a wall bends out of the vertical, towards the wall, For multiple adjacent jets, the jet lengths show dependence on orifice layout: the lengths are in reasonable agreement with published measurements, by other methods, for single jets. The MRI gives three-dimensional images of the single jets and of multiple jets, separate or merging.  相似文献   

2.
The growth rates of density fluctuations in the mixing layer of strongly underexpanded lowdensity jets are measured by the electronbeam technique within the range of Reynolds numbers ReL = 50 – 230. Regimes of selfinduced oscillations are determined for these flow conditions in the case of a jet incident normally onto a finitesize target. Results on the frequency of pressure oscillations on the target are obtained and compared with the spectra of the growth rates of density fluctuations in the mixing layer of free jets. It is shown that selfinduced oscillations cannot be sustained because of the development of instability in the mixing layer of the jet.  相似文献   

3.
The self-excited oscillation of a large aspect ratio planar jet impinging on a flat plate is investigated experimentally at a single transonic jet velocity to clarify the effect of varying the jet thickness on pattern of jet oscillation and frequency of resulting acoustic tone. The study has been performed for a series of jet thicknesses, 1 mm to 4 mm, each of which is tested for the complete range of plate position, i.e. impingement distance, over which acoustic tones are generated. The results reveal that the jet oscillation is controlled by a fluid-dynamic mechanism for small impingement distances, where the hydrodynamic flow instability controls the jet oscillation without any coupling with local acoustic resonances. At larger impingement distances, a fluid-resonant mechanism becomes dominant, in which one of the various hydrodynamic modes of the jet couples with one of the resonant acoustic modes occurring between the jet nozzle and the impingement plate. Within the fluid-resonant regime, the acoustic tones are found to be controlled by the impingement distance, which is the length scale of the acoustic mode, with the jet thickness having only minor effects on the tone frequency. Flow visualization images of the jet oscillation pattern at a constant impingement distance show that the oscillation occurs at the same hydrodynamic mode of the jet despite a four-fold increase in its thickness. Finally, a feedback model has been developed to predict the frequency of acoustic tones, and has been found to yield reasonable predictions over the tested range of impingement distance and nozzle thickness.  相似文献   

4.
In this article, an optical method to control the break-up of high-speed liquid jets is proposed. The method consists of focusing the light of a pulsed laser source into the jet behaving as a waveguide. Experiments were performed with the help of a Q-switched frequency doubled Nd:Yag laser (=532 nm). The jet diameter was 48 µm and jet velocities from 100 to 200 m/s. To study the laser-induced water jet break-up, observations of the jet coupled with the high power laser were performed for variable coupling and jet velocity conditions. Experimentally determined wavelength and growth rate of the laser-generated disturbance were also compared with the ones predicted by linear stability theory of free jets.  相似文献   

5.
A two-dimensional flow generated by the interaction of two opposing, symmetric curved wall jets is investigated experimentally. The overall flow field can be divided into the curved wall jet region, the interaction region, and the merged jet region; thus, the results of the measurement are discussed to characterize these three distinct regions. For the curved wall jet region, the Reynolds stress distribution, the correlation coefficient, , and the ratio of normal stresses, , are presented and the effects of curvature and adverse pressure gradient on these distributions are discussed. The Reynolds stress distributions in the interaction region are analyzed in detail to illuminate the negative production of the turbulent kinetic energy. The developing jet in this region is found to accelerate owing to the very high pressure arising from the collision of the two wall jets. A counter-gradient shear flow situation is also observed in this interacting region. Measured data in the merged jet region are often compared to those of plane jets and the development of the merged jet is discussed in that respect. The spreading rate of the present merged jet is found to be much larger than that of the plane jets. To account for the larger spreading rate, the intermittency distribution is also investigated.List of symbols b position of y where U = U c/2 - f turbulent/non-turbulent interface crossing rate - f max maximum interface crossing rate - h slot height of the wall jet, 10 mm - L u integral length scale - P, P a static and atmospheric pressure, respectively - P u 2 production rate of longitudinal normal stress - P v 2 production rate of lateral normal stress - r radial distance from the cylinder surface - R radius of curvature of the cylinder, 100 mm - r 1/2 position of r where U=U m/2 - U streamwise velocity - U c centerline velocity of the merged jet - U m maximum velocity of the curved wall jet - U 0 exit velocity - \] Reynolds stresses - V lateral velocity in the merged jet - x distance along the centerline of the merged jet - y lateral distance from the centerline of the merged jet - intermittency factor  相似文献   

6.
Low speed jets have important applications in chemical process, power and aerospace industries. Velocity fluctuations in low speed laminar jets have been investigated experimentally and theoretically, in the present work. The effects of buoyancy on the mean and fluctuating components of velocity have been highlighted. It is observed that even for forced convection dominated flow, convective instabilities and the resulting local velocity fluctuations are significantly influenced by buoyancy. Both the dominant frequency and the amplitude of velocity fluctuations depend on the jet exit temperature and spatial location within the jet. For isothermal jets, the dominant frequency of oscillation increases almost linearly with Reynolds number, while for buoyant jets nonlinearity exists at lower Reynolds numbers. Numerical simulations of the present study are found to be reasonably successful in predicting the oscillatory behavior of both isothermal and non-isothermal laminar free jets accurately.  相似文献   

7.
Direct and large-eddy simulations (DNS/LES) of accelerating round jets are used to analyze the effects of acceleration on the kinematics of vortex rings in the near field of the jet (x/D < 12). The acceleration is obtained by increasing the nozzle jet velocity with time, in a previously established (steady) jet, and ends once the inlet jet velocity is equal to twice its initial value. Several acceleration rates (α = 0.02–0.6) and Reynolds numbers (Re D = 500–20000) were simulated. Acceleration maps were used to make a detailed study of the kinematics of vortex rings in accelerating jets. One of the effects of the acceleration is to cause a number of new primary and secondary vortex merging events that are absent from steady jets. As the acceleration rate α increases, both the number of primary merging events between rings and the axial position where these take place decreases. The statistics for the speed of the starting ring that forms at the start of the acceleration phase for each simulation, agree well with the statistics for the “front” speed observed by Zhang and Johari (Phys Fluids 8:2185–2195, 1996). Acceleration maps and flow visualizations show that during the acceleration phase the near field coherent vortices become smaller and are formed at an higher frequency than in the steady jet, and their (mean) shedding frequency increases linearly with the acceleration rate. Finally, it was observed that the acceleration decreases the spreading rate of the jet, in agreement with previous experimental works.   相似文献   

8.
The free surface dynamics and sub-surface flow behavior in a thin (height and width much larger than thickness), liquid filled, rectangular cavity with a submerged bifurcated nozzle were investigated using free surface visualization and particle image velocimetry (PIV). Three regimes in the free surface behavior were identified, depending on nozzle depth and inlet velocity. For small nozzle depths, an irregular free surface is observed without clear periodicities. For intermediate nozzle depths and sufficiently high inlet velocities, natural mode oscillations consistent with gravity waves are present, while at large nozzle depths long term self-sustained asymmetric oscillations occur.For the latter case, time-resolved PIV measurements of the flow below the free surface indicated a strong oscillation of the direction with which each of the two jets issue from the nozzle. The frequency of the jet oscillation is identical to the free surface oscillation frequency. The two jets oscillate in anti-phase, causing the asymmetric free surface oscillation. The jets interact through a cross-flow in the gaps between the inlet channel and the front and back walls of the cavity.  相似文献   

9.
High frequency oscillations are observed in a beam generated plasma subjected to an axial uniform magnetic field. The oscillation frequency is measured as a function of the cyclotron frequency. The system is in a condition just below total glow.The oscillations are classified by comparing the experimental results with theoretical analyses of beam plasma systems in literature. Two types of oscillation are found. They result from (A) the interaction between the forward plasma wave and the slow space charge wave of the beam and (B) the interaction between the backward plasma wave and the slow space charge wave of the beam. The oscillation frequency of type A is practically independent of the cyclotron frequency, whereas the frequency of oscillation B increases linearly with it. For type A oscillations to occur a minimum value of the cyclotron frequency is required.Nomenclature phase constant - B 0 static axial magnetic induction - e electron charge - f c cyclotron frequency - f cc critical cyclotron frequency - f h hybrid frequency - f osc oscillation frequency - f p plasma frequency - I b beam current - I c collector current - m electron mass - N e electron density per unit beam length - b beam charge density - p plasma charge density - r p plasma radius - S beam pervenance - V ak anode-cathode potential - V b beam voltage - Units SI-units are employed  相似文献   

10.
Capillary flow of poly (ethylene oxide) solutions generates voltage fluctuations (noise) between electrodes placed on both sides of the capillary. The noise has a 1/f type spectral distribution, the value of increasing with (shear rate) to a limiting level. Within certain ranges, two sets of harmonic peaks appear in the spectra. It is demonstrated that these peaks are related to the frequency components of the instabilities in the entry flow region. The lower frequency set of harmonics corresponds to axial oscillations (pulsations) of the flow, while the higher frequency peaks are associated with the transverse oscillation of the stream lines in the vicinity of the entry. The corresponding frequencies were measured by visual counting and by spectral analysis of laser light transmitted through the entry region during injection of a coloured solution.The noise measurements were carried out using both platinum and reversible Ag/AgCl electrodes. In the latter case the streaming potential was also measured; its variation due to pressure fluctuations in the instable flow region appears to provide a plausible explanation of flow-induced noise phenomena as observed in elastic solutions.Dedicated to Prof. Dr. J. Schurz on the occasion of his sixtieth birthday.  相似文献   

11.
The present investigation reports on the near field behavior of gas jets in a long confinement and points out the differences between this type of jet flow and those of free jets and jets in a short confinement.The jet, with a diameter of 8.73 mm, is aligned concentrically with a tube of 125 mm diameter; thus giving a confinement area ratio of 205. The arrangement forms part of the test section of an open-jet wind tunnel and this gives a confinement length-to-jet diameter ratio of 1,700. Experiments are carried out with carbon dioxide, air and helium/air jets at different jet velocities. Mean velocity and turbulence measurements are made of the jet near field using a one-color, one-component laser doppler velocimeter operating in the forward scatter mode. In addition, the turbulent shear field of an air jet is examined in more detail using hot-wire anemometers.In view of the long confinement, the presence of the jet is not being felt immediately at the tunnel exit. Consequently, the air column inside the tunnel is first compressed by the jet and then slowly pushed out of the tunnel. This behavior causes the jet to spread rapidly and to decay quickly. As a result, an equilibrium turbulence field is established in the first two diameters of the jet. This equilibrium field bears striking similarity to that found in self-preserving, turbulent free jets and jets in short confinement and is independent of jet fluid densities and velocities. In terms of these characteristics, the near field of jets in a long confinement is very different from that found in free jets and jets in short confinements.  相似文献   

12.
Flow characteristics of confined, laminar milliscale slot jets are investigated from visualizations, as they impinge upon a flat target plate, with a fully developed velocity profile at the nozzle exit. The effects of Reynolds number Re and normalized nozzle-to-plate distance H/B are considered for a nozzle width B of 1.0 mm. Transition from a stable symmetric jet to an unsteady oscillating jet is observed as the Reynolds number increases (with H/B constant), where the Reynolds number associated with this transition decreases as the normalized nozzle-to-plate distance H/B increases. Instantaneous visualizations show unsteady lateral distortions of jet columns at experimental conditions corresponding to the presence of continuous sinusoidal oscillations, intermittent oscillating motion of the jet column, and jet flow fluctuation/flapping motion. Also apparent in flow visualization sequences are smoke signatures associated with instantaneous vortex structures, which form as secondary flows develop in fluid which, initially, is just adjacent to and within the jet column. Associated jet and vortex structural changes are described as different modes of unsteadiness are present, including characterization of jet column unsteadiness using jet column oscillation frequency, and lateral and streamwise extents of jet distortion.  相似文献   

13.
The intrinsic characteristics of coherent structures in the near field of a plane jet are extensively studied by hot-wire measurements. The instability modes which are responsible for the dynamics of the coherent structures are found to exhibit distinct evolution characters at different transverse positions of the shear layer along downstream direction. The occurrence of multiple peaks in the energy spectra depicts the formation of the sideband instabilities in the early stage of the jet flow field. These sideband instabilities are investigated to be induced by the mechanisms of the nonlinear interactions between neighboring fundamental and subharmonic instabilities, and the feedback effects of the preferred mode near the end of the potential core. Also, from the spatial distributions of the instability modes over the jet flow field, Ho's subharmonic evolution model (1982) is further examined with more interpretations.List of symbols E (f) energy content of streamwise velocity fluctuation at spe cific frequency - f e excitation frequency - f 0 fundamental frequency - f p preferred frequency - f r response frequency in an excited jet - H height of the plane jet at the exit - U streamwise mean velocity - U 0 mean velocity at the nozzle exit - U c mean velocity at the jet center line - u streamwise RMS velocity fluctuation - u p peak streamwise velocity fluctuation alongY axis - u (f) amplitude of streamwise velocity fluctuation at specific frequency - X, Y streamwise and transverse coordinates - Y a transverse position whereU = aU c ,a = 0.99, 0.9,..., etc. - Y c transverse position at the jet center line - 0 initial instability wave length (=U 0/2f 0) - 0 momentum thickness - 0 initial boundary layer momentum thickness A version of this paper was presented at the 11th Symposium on Turbulence, University of Missouri-Rolla, Oct. 17–19, 1988  相似文献   

14.
The operation of microscopic high-speed liquid-metal jets in vacuum has been investigated. We show that such jets may be produced with good stability and collimation at higher speeds than previously demonstrated, provided that the nozzle design is appropriate and that cavitation-induced instabilities are avoided. The experiments with a medium-speed tin jet (u ∼ 60 m/s, Re=1.8×104, Z=2.9×10−3) showed that it operated without any signs of instabilities, whereas the stability of high-speed tin jets (d=30 μm, u=500 m/s, Re=5.6×104, Z=4.7×10−3) has been investigated via dynamic similarity using a water jet. Such a 500-m/s tin jet is required as the anode for high-brightness operation of a novel electron-impact X-ray source.  相似文献   

15.
Recently, the question of the nonlinear relation between various plasma oscillations has been the subject of much attention as a result of a series of circumstances. The most important of these is the fact that in the majority of experiments on beam instabilities [1, 2] the intensity of the oscillations excited is very large, so that nonlinear effects in the interaction of oscillations must be significant. It should be noted that beam instability is not the only method of exciting highfrequency plasma oscillations. As was shown in [3], very intense oscillations may also be excited by beams of transverse waves of various frequency ranges, among which are powerful light beams [4]. Finally, excitation is possible by means of shock waves [5] and large-amplitude waves propagating through a plasma.Nonlinear coupling of plasma and low-frequency ion-sound oscillations leads, in particular, to the generation of the latter [6]. On the one hand, this is of interest as regards the problem of turbulent heating of a plasma, since the absorption of ion-sound oscillations in a plasma is usually stronger than the absorption of plasma oscillations. On the other hand, ion-sound oscillations may bring about the acceleration of low-energy ions due to the effects of induced erenkov absorption and radiation of waves by ions, as considered in the work of one of the authors [7], Although plasma oscillations accelerate particles more effectively [8], the injection conditions in the configuration for acceleration by plasma oscillations are very stringent v > ve. The number of ions with such velocity for small ion temperatures Ti is small. Thus, the acceleration of ions will arise in this case as a result of the interaction of ion-sound oscillations until such time as their velocity reaches values of the order ve. This question is of interest not only for the acceleration of ions (heating) in the presence of high-frequency turbulence created by beams of charged particles or as a result of the action of powerful radiation on a plasma, but also for the problem of neutron radiation from powerful impulse discharges in a plasma and for a series of astrophysical problems.In what follows we consider a number of one-dimensional self-consistent problems regarding the interaction (decay and fusion) of plasma and ion-sound oscillations resulting from the induced Raman scattering of the former by the latter. It is shown that the development of instability in a turbulent plasma with a high level of excited plasma oscillations leads both to the excitation of ion-sound oscillations, and also to the appearance in the plasma oscillation spectrum of satellites differing from the basic frequency 0e by a frequency of the order 0i and with greater intensities for the lower frequencies. The qualitative change of the plasma oscillation spectrum may serve as an immediate indication of the excitation of ion-sound oscillations in the system. The results obtained allow one to trace the process of development of instabilities. It is shown that in a plasma with a high level of ion-sound oscillations violet satellites are excited in the plasma oscillation spectrum, while the intensities of the violet satellites have a tendency to level out and form a satellite plateau if the level of ion-sound waves is high enough.  相似文献   

16.
The present investigation aims to attenuate purely hydrodynamic, long-wavelength, self-excited oscillations of flow past a perforated or slotted plate by deflection of the inflow with a small ramp located at the leading-edge of the plate. Digital particle image velocimetry is complemented by unsteady pressure measurements to determine the underlying physics associated with attenuation of the oscillations. Irrespective of whether a perforated or slotted plate is employed, complete attenuation of the pressure fluctuations associated with the oscillation can be achieved for dimensionless deflection ratios of h/L ≥ 0.035, in which h is the height of the ramp and L is the effective plate length. The attenuation of the self-excited oscillation involves: a steady jet at the trailing-edge of the plate directed into the cavity; a lower magnitude upstream-oriented counterflow along the backside of the plate; and jet-like flows through the plate openings to satisfy the entrainment demands of the separating shear layer.  相似文献   

17.
This study uses a high-speed visualization technique to investigate the breakup process and flow behavior of low pressure water jets issued from non-circular orifices including square, triangular, and rectangular shapes. These orifices have approximately the same sectional areas. Stability curve and Ohnesorge chart are employed to make a comparison with circular jets discharged from a circular orifice of the same sectional area. The analysis is carried out for gauge pressures varying from 0.1 psi to 70 psi with small pressure steps corresponding to a range from 0.7 kPa to 482.6 kPa in metric units. Axis-switching phenomenon is observed and analyzed through calculating the axis-switching wavelength and oscillation frequency for rectangular jets. It is found that results for circular jets agreed well with classic theory. Non-circular jets demonstrate enhanced instabilities as a whole compared to circular jets. The different behaviors of non-circular jets are reasonably explained by Rayleigh’s oscillation theory. Axis-switching and aspect-ratio effect in rectangular jets is found to slow down the increase of breakup-length in the Rayleigh breakup regime. Square and triangular jets are more susceptible to wind effects and they are more unstable especially at higher pressure conditions. This can be concluded from the shorter breakup-length and narrower transitional region from the Rayleigh regime to the wind-induced regime as compared to the circular and rectangular jets. Axis-switching wavelength of the rectangular jets is found to increase linearly with increasing jet velocity and oscillation frequency decreases correspondingly.  相似文献   

18.
Although turbulent jets have been studied extensively, one configuration that has not received much attention is the viscosity-stratified jet, wherein a turbulent jet of lower viscosity issues into a density-matched host liquid of higher viscosity. We present experimental data for scalar dispersion and two-dimensional velocity measurements in the axial plane of a turbulent axisymmetric jet with a Reynolds number (Re) of 2,000 issuing into a viscous host liquid at viscosity ratios (m) ranging from 1 to 55. The presence of a strong viscosity discontinuity across the jet edge results in a significant decrease in the scalar spread rate. We attribute this to the rapid reduction in turbulence intensity and the suppression of large engulfing eddies at the jet edge. The velocity profile, on the other hand, indicates that the velocity width and mass flux reduce with increasing m up to about 20, but then increase for higher values of m. This non-monotonic variation is explained by the growing influence of viscous stress for m>20. The scalar spread rate, the velocity spread rate, the centerline velocity decay rate, and the jet mass flux are all minimized for m20 for Re=2,000.
Ajay K. PrasadEmail:
  相似文献   

19.
A new technique for measuring the growth of instabilities on the surface of liquid jets flowing into gas is demonstrated. A collimated beam of white light illuminates the jet from behind, forming a shadow image. A pair of cylindrical lenses are arranged to provide different magnifications in the streamwise and cross-stream directions. A number of streamwise diameters and one cross-stream diameter are thus captured with maximum resolution in a single image on a charge-coupled device (CCD) electronic camera. A short-duration spark is used to freeze the jet motion. A mask representing the theoretical edge-response of the imaging system is digitally convolved with the cross-stream gray scale data to obtain sub-pixel resolution of the jet edge profile. The method is demonstrated using the well-known capillary jet instability and a ratio of streamwise to cross-stream magnifications of 40. Well-resolved single images show the development of the instability from small perturbations through the formation of the first drop. The system forms an accurate automated method of measuring the development of liquid jet instabilities. It can readily be applied to practical problems including liquid jet atomization.List of symbols a undisturbed jet radius - k nondimensional wavenumber (= 2a/) - Q gas-to-liquid density ratio - r 0 mean jet radius, from initial region of image - R Reynolds number (= 2Ua/) - U mean jet velocity - We Weber number - z streamwise coordinate, origin at jet orifice - temporal growth rate - s measured spatial growth rate - nondimensional temporal growth rate - r absolute value of height of peaks or troughs relative to r 0 - r 1 height of first extremum in a particular record - instability wavelength - liquid viscosity - liquid density - surface tension of liquid-gas interface  相似文献   

20.
The periodic formation of vortex rings in the developing region of a round jet subjected to high-amplitude acoustic forcing is investigated with High-Speed Particle Image Velocimetry. Harmonic velocity oscillations ranging from 20 to 120% of the mean exit velocity of the jet was achieved at several forcing frequencies determined by the acoustic response of the system. The time-resolved history of the formation process and circulation of the vortex rings are evaluated as a function of the forcing conditions. Overall, high-amplitude forcing causes the shear layers of the jet to breakup into a train of large-scale vortex rings, which share many of the features of starting jets. Features of the jet breakup such as the roll-up location and vortex size were found to be both amplitude and frequency dependent. A limiting time-scale of t/T ≈ 0.33 based on the normalized forcing period was found to restrict the growth of a vortex ring in terms of its circulation for any given arrangement of jet forcing conditions. In sinusoidally forced jets, this time-scale corresponds to a kinematic constraint where the translational velocity of the vortex ring exceeds the shear layer velocity that imposes pinch-off. This kinematic constraint results from the change in sign in the jet acceleration between t = 0 and t = 0.33T. However, some vortex rings were observed to pinch-off before t = 0.33T suggesting that they had acquired their maximum circulation. By invoking the slug model approximations and defining the slug parameters based on the experimentally obtained time- and length-scales, an analytical model based on the slug and ring energies revealed that the formation number for a sinusoidally forced jet is L/D ≈ 4 in agreement with the results of Gharib et al. (J Fluid Mech 360:121–140, 1998).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号