共查询到20条相似文献,搜索用时 10 毫秒
1.
Collision energy dependence of partial ionization cross sections (CEDPICS) of p-benzoquinone with He(*)(2 (3)S) metastable atoms indicates that interaction potentials between p-benzoquinone and He(*)(2 (3)S) are highly anisotropic in the studied collision energy range (100-250 meV). Attractive interactions were found around the C==O groups for in-plane and out-of-plane directions, while repulsive interactions were found around CH bonds and the benzenoid ring. Assignment of the first four ionic states of p-benzoquinone and an analogous methyl-substituted compound was examined with CEDPICS and anisotropic distributions of the corresponding two nonbonding oxygen orbitals (n(O) (+),n(O) (-)) and two pi(CC) orbitals (pi(CC) (+),pi(CC) (-)). An extra band that shows negative CEDPICS was observed at ca. 7.2 eV in Penning ionization electron spectrum. 相似文献
2.
Ionization of bromomethanes (CH3Br, CH2Br2, and CHBr3) upon collision with metastable He*(2(3)S) atoms has been studied by means of collision-energy-resolved Penning ionization electron spectroscopy. Lone-pair (nBr) orbitals of Br4p characters have larger ionization cross sections than sigma(C-Br) orbitals. The collision-energy dependence of the partial ionization cross sections shows that the interaction potential between the molecule and the He*(2(3)S) atom is highly anisotropic around CH3Br or CH2Br2, while isotropic attractive interactions are found for CHBr3. Bands observed at electron energies of approximately 2 eV in the He*(2(3)S) Penning ionization electron spectra (PIES) of CH2Br2 and CHBr3 have no counterpart in ultraviolet (He I) photoionization spectra and theoretical (third-order algebraic diagrammatic construction) one-electron and shake-up ionization spectra. Energy analysis of the processes involved demonstrates that these bands and further bands overlapping with sigma(C-Br) or piCH2 levels are related to autoionization of dissociating (He+ - Br-) pairs. Similarly, a band at an electron energy of approximately 1 eV in the He*(2(3)S) PIES spectra of CH3Br has been ascribed to autoionizing Br** atoms released by dissociation of (unidentified) excited states of the target molecule. A further autoionization (S) band can be discerned at approximately 1 eV below the lone-pair nBr bands in the He*(2(3)S) PIES spectrum of CHBr3. This band has been ascribed to the decay of autoionizing Rydberg states of the target molecule (M**) into vibrationally excited states of the molecular ion. It was found that for this transition, the interaction potential that prevails in the entrance channel is merely attractive. 相似文献
3.
Penning ionization of phenylacetylene and diphenylacetylene upon collision with metastable He*(2(3)S) atoms was studied by collision-energy-/electron-energy-resolved two-dimensional Penning ionization electron spectroscopy (2D-PIES). On the basis of the collision energy dependence of partial ionization cross-sections (CEDPICS) obtained from 2D-PIES as well as ab initio molecular orbital calculations for the approach of a metastable atom to the target molecule, anisotropy of interaction between the target molecule and He*(2(3)S) was investigated. For the calculations of interaction potential, a Li(2(2)S) atom was used in place of He*(2(3)S) metastable atom because of its well-known interaction behavior with various targets. The results indicate that attractive potentials localize in the pi regions of the phenyl groups as well as in the pi-conjugated regions of the acetylene group. Although similar attractive interactions were also found by the observation of CEDPICS for ionization of all pi MOs localized at the C[triple bond]C bond, the in-plane regions have repulsive potentials. Rotation of the phenyl groups about the C[triple bond]C bond can be observed for diphenylacetylene because of a low torsion barrier. So the examination of measured PIES was performed taking into consideration the change of ionization energies for conjugated molecular orbitals. 相似文献
4.
Borodin A Yamazaki M Kishimoto N Ohno K 《The journal of physical chemistry. A》2005,109(21):4721-4727
Penning ionization of formic acid (HCOOH), acetic acid (CH3COOH), and methyl formate (HCOOCH3) upon collision with metastable He*(2(3)S) atoms was studied by collision-energy/electron-energy-resolved two-dimensional Penning ionization electron spectroscopy (2D-PIES). Anisotropy of interaction between the target molecule and He*(2(3)S) was investigated based on the collision energy dependence of partial ionization cross sections (CEDPICS) obtained from 2D-PIES as well as ab initio molecular orbital calculations for the access of a metastable atom to the target molecule. For the interaction potential calculations, a Li atom was used in place of He*(2(3)S) metastable atom because of its well-known similarity in interaction with targets. The results indicate that in the studied collision energy range the attractive potential localizes around the oxygen atoms and that the potential well at the carbonyl oxygen atom is at least twice as much as that at the hydroxyl oxygen. Moreover we can notice that attractive potential is highly anisotropic. Repulsive interactions can be found around carbon atoms and the methyl group. 相似文献
5.
Separate Penning electron spectra were measured resulting from the ionization of H atoms by He(21S) and He(23S) metastables in thermal collisions. From these results potential parameters of the diatomics He(21S)-H(2S) (2Σ) and He(23S)-H(2S) (2Σ) as well as the cross-section ratio σ(singlet)/σ(triplet) are derived. 相似文献
6.
Electron emission spectra obtained by thermal collisions of He(?)(2(3)S) metastable atoms with C(6)H(6)/Pt(111), C(6)H(6)/K/Pt(111), and K/C(6)H(6)/Pt(111) were measured in the temperature range of 50-200 K to elucidate the adsorption/aggregation states, thermal stabilities of pure and binary films, and local electronic properties at the organic-metal interface. For C(6)H(6)/Pt(111), the He(?)(2(3)S) atoms de-excite on the chemisorbed overlayer predominantly via resonance ionization followed by Auger neutralization and partly via Penning ionization (PI) yielding weak emission just below the Fermi level (E(F)). We assigned this emission to the C(6)H(6) π-derived states delocalized over the Pt?5d bands on the basis of recent density functional calculations. During the layer-by-layer growth, the C(6)H(6)-derived bands via PI reveal a characteristic shift caused by the final-state effect (hole response at the topmost layer). C(6)H(6) molecules chemisorb weakly on the bimetallic Pt(111) (θ(K)=0.1) and physisorb on the K multilayer. In both cases, the sum rule was found to be valid between the K?4s and C(6)H(6)-derived bands. The band intensity versus exposure plot indicates that the C(6)H(6) film grows on the K multilayer by the Volmer-Weber mechanism (island growth), reflecting the weak K-C(6)H(6) interactions. In case of K/C(6)H(6)/Pt(111), the K atoms are trapped on the topmost C(6)H(6) layer at 65 K, forming particlelike clusters. The surface plasmon satellite was identified for the first time and the loss energy increases with increasing cluster size. The K clusters are unstable above ~100?K due to thermal migration into the C(6)H(6) film. When the cluster coverage is low, the K?4s band extends below and above E(F) of the Pt substrate and the anomaly is discussed in terms of vacuum level bending around the cluster. 相似文献
7.
H. Waibel M. -W. Ruf H. Hotop 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1988,9(3):191-207
The first electron spectrometric study of the ionizing reaction of metastable He(23 S 1) atoms with ground state hydrogen atoms has been carried out with sufficiently high resolution to partially resolve the rotational structure due to formation of rovibrationally excited HeH+ (v, J) ions at two different beam source temperatures (300 K and 90 K). The electron energy spectrum has been reproduced in model quantum calculations, using a new large scale ab initio calculation of the He(23 S)+H(12 S)2Σ-potential. The imaginary part has been adjusted to yield a satisfactory fit to the measured spectrum. The collision energy dependence of the associative ionization electron spectra and of the total and partial ionization cross sections is discussed in some detail. No significant signs for limitations of the used local complex potential method, indicated by results of an earlier study of the He(23 S)+H(12 S) system, have been found in the present work, in which the calculations were carried out with an improved and corrected program. 相似文献
8.
T. Bregel A. J. Yencha M-W Ruf H. Waibel H. Hotop 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1989,13(1):51-60
The energy spectra of electrons released in thermal energy (≈ 50 meV) ionizing collisions of He*(21 S, 23 S) with H2 have been measured with high resolution and low background. Based on a detailed data analysis, we report accurate H 2 + (v′) vibrational populationsP(v′) for both He*(21 S)+H2(v′=0–10) and He*(23 S)+H2(v′=0–15) and the spectral shapeS(ε) for the individual vibrational peaks. The vibrational populationsP(v′) are quite similar to the Franck-Condon factorsf v ′0 for unperturbed H2(v″=0)→H 2 + (v′) transitions, but, more in detail, the ratiosP(v′)/f v ′0 show a characteristically differentv′-dependence for He*(23 S), He*(21 S), and HeIα(58.4 nm) ionization. The vibrational level separations in the He*(21 S, 23 S)+H2 spectra agree with those in the HeI photoelectron spectrum to within 1–2 meV. The spectral shapesS(ε) are characteristically different for He*(21 S)+H2 and He*(23 S)+H2, reflecting the respective differences in the entrance channel potentials, as determined previously in ab initio calculations and from scattering experiments. 相似文献
9.
The potential energy surface of benzene (C(6)H(6)) with a He*(2(3)S) atom was obtained by comparison of experimental data in collision-energy-resolved two-dimensional Penning ionization electron spectroscopy with classical trajectory calculations. The ab initio model interaction potentials for C(6)H(6)+He*(2(3)S) were successfully optimized by the overlap expansion method; the model potentials were effectively modified by correction terms proportional to the overlap integrals between orbitals of the interacting system, C(6)H(6) and He*(2(3)S). Classical trajectory calculations with optimized potentials gave excellent agreement with the observed collision-energy dependence of partial ionization cross sections. Important contributions to corrections were found to be due to interactions between unoccupied molecular orbitals and the He*2s orbital. A C(6)H(6) molecule attracts a He*(2(3)S) atom widely at the region where pi electrons distribute, and the interaction of -80 meV (ca. -1.8 kcal/mol) just cover the carbon hexagon. The binding energy of a C(6)H(6) molecule and a He* atom was 107 meV at a distance of 2.40 A on the sixfold axis from the center of a C(6)H(6) molecule, which is similar to that of C(6)H(6)+Li and is much larger than those of the C(6)H(6)+[He,Ne,Ar] systems. 相似文献
10.
Biondini F Brunetti BG Candori P De Angelis F Falcinelli S Tarantelli F Pirani F Vecchiocattivi F 《The Journal of chemical physics》2005,122(16):164308
A theoretical investigation of the intermolecular interaction, operative in collision complexes of He*(2 3S1), He*(2 1S0), and Ne*(3P2,0) with N2O, is carried out to explain the main results of the experimental study reported in the preceding paper. The analysis is carried out by means of a semiempirical method based on the identification, modeling, and combination of the leading interaction components, including the effect of the selective polarization of the more external electronic cloud of the metastable atom in the intermolecular electric field. These and other crucial aspects of our approach have been quantitatively verified by ab initio calculations. The proposed method permits to evaluate the interaction at any configuration of the complexes and provides a useful and inexpensive representation of the intermolecular potential energy for dynamics studies. The main experimental findings can be rationalized taking into account the critical balancing between molecular orientation effects in the intermolecular interaction field and the ionization probability. These orientation effects tend to become less pronounced with increasing collision energy. 相似文献
11.
Biondini F Brunetti BG Candori P De Angelis F Falcinelli S Tarantelli F Moix Teixidor M Pirani F Vecchiocattivi F 《The Journal of chemical physics》2005,122(16):164307
The energetics of [Rg... N2O]* autoionizing collision complexes (where Rg=He or Ne) and their dynamical evolution have been studied in a crossed beam apparatus, respectively, by Penning ionization electron spectroscopy (PIES) and by mass spectrometry (MS) techniques in the thermal energy range. The PIES spectra, detected by an electron energy analyzer, were recorded for both complexes at four different collision energies. Such spectra allowed the determination of the energy shifts for Penning electron energy distributions, and the branching ratios for the population of different electronic states and for the vibrational population in the molecular nascent ions. For the [Ne...N2O]* collision complex it was found, by MS, that the autoionization leads to the formation of N2O+, NO+, O+, and NeN2O+ product ions whose total and partial cross sections were measured in the collision energy range between 0.03 and 0.2 eV. The results are analyzed exploiting current models for the Penning ionization process: the observed collision energy dependence in the PIES spectra as well as in the cross sections are correlated with the nature of the N2O molecule orbitals involved in the ionization and are discussed in term of the Rg-N2O interaction potentials, which are estimated by using a semiempirical method developed in our laboratory. 相似文献
12.
M. Getzlaff D. Egert H. Steidl G. Baum W. Raith 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1994,30(2):245-249
Electron spectra of tungsten (110) and of thin cobalt (0001) films, clean and after oxygen exposure, have been taken using metastable de-excitation spectroscopy (MDS). The spectra of remanently magnetized Co(0001), obtained with spin polarized MDS (SPMDS), show different intensities in the cobalt induced structure when reversing the polarization of the incident spin polarized He(23 S) atomic beam. Due to theextreme surface sensitivity and thespin selectivity of the de-excitation process, this is evidence of differences in thespin resolved density of states of theoutermost cobalt layer. 相似文献
13.
Jan Vojtík 《International journal of quantum chemistry》1996,57(4):543-550
Vibrational population factors for the nascent Penning ions HD+ (v′)(… He) and energy of the corresponding Penning electrons are calculated for the ionization event He(23S)(SINGLEBOND)HD(v′ = 0) → [He … HD+(v′)] + e− taking place at a range of the He*(SINGLEBOND)HD separations and orientations accessible by the system during thermal energy collisions. The vibrational population factors are obtained from the local widths of the He(23S)(SINGLEBOND)HD(v′ = 0, N) state with respect to autoionization to HD+(… He) in its v′th vibrational level. The initial overall picture of the autoionization event is consistent with the He(23S)(SINGLEBOND)H2(v′ = 0) one. On the other hand, the vibrational population factors are different from the approximate average populations used in initial model theoretical considerations about the Penning processes in the system. Variation of the calculated considerations about the Penning processes in the system. Variation of the calculated quantities with changes in the He*(SINGLEBOND)HD separations and orientations is found to be smooth enough to guarantee that the present data might form a sound basis for construction of analytical representations of the corresponding 2D surfaces and for future study of the dynamics of the collision system. © 1996 John Wiley & Sons, Inc. 相似文献
14.
G. Baum W. Raith H. Steidl 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1988,10(2-3):171-178
This beam was developed as a target for a crossed-beam electron-atom scattering experiment on the interaction of a polarized spin-1/2 electron with a polarized spin-1 atom. In the future this beam will be used in “Spin-Polarized Metastable Atom Deexcitation Spectroscopy” (SPMDS) for studying ferromagnetic surfaces without and with adsorbate layers. We use a discharge source for producing a beam of metastable helium atoms, a permanent sextupole magnet with a central stop at its exit for selecting He(23 S) atoms in the Zeeman substatem s =+1, a zero-field spin flipper for reversing the atomic beam polarization with respect to a magnetic guiding field, and a Stern-Gerlach magnet for analyzing the atomic polarization. At a distance of 90 cm beyond the exit of the sextupole, in the “interaction region” of an experiment, the polarized beam has a circular cross section of about 6 mm FWHM and a particle density of 1 · 107 atoms/cm3. The reversible spin polarization was determined asP=0.90±0.02. A possible contamination of the beam with metastable singlet atoms is included within this value; the ground-state He atoms are not considered to be part of the polarized beam. An observed contamination with long-lived Rydberg atoms can easily be destroyed by applying a high electric field. 相似文献
15.
Rotational-state distributions of the CO+ (A–X, B–X) and N2+(B–X) emissions produced by the collisions of He(2 3S) with CO and N2 were studied in the collision energy (ER range 100–200 meV. The rotational populations of the emitting states can be fitte by single Boltzmann temperatures (TR. The TR (320 ± 30 K) for the ν′ = 3 and 4 levels of the CO+ (A2Π) state are nearly independent of, or slightly increase with, ER, while TR for the CO+(B2Σ+, ν′ = 0) state increases rapidly with ER.The TR (430 ± 20 K) for the N2+(B2Σ+, ν′ = 0) state is nearly independent or slightly decreases with increasing ER. Interactions providing these trends are discussed. 相似文献
16.
17.
We have determined the dynamic dipole (α1), quadrupole (α2), octupole (α3), and dipole–dipole–quadrupole (B) polarizabilities and the second hyperpolarizability tensor (γ) for the helium atom in its lowest triplet state (23S). We have done so for both real and imaginary frequencies: in the former case, for a range of frequencies (ω) between zero and the first electronic-transition frequency, and in the latter case for a 32-point Gauss–Legendre grid running from zero to ?ω = 20 Eh. We have also determined the dispersion-energy coefficients C6, C8, and C10 for the systems H(12S)? He(23S), He(11S)? He(23S), and He(23S)? He(23S) and the C, C, C, C, and C coefficients for the interaction He(23S)? H2(X1∑). Our values of the higher-order multipolar polarizabilities and of γ for the 23S state of helium are, we believe, the first to be published. © 1993 John Wiley & Sons, Inc. 相似文献
18.
Ti- and V-bz2 (bz=C6H6) sandwich complexes have been prepared in a laser-ablation cluster beam source and studied by pulsed field ionization-zero electron kinetic energy photoelectron spectroscopy and theoretical calculations. The ground electronic states of the neutral Ti- and V-bz2 complexes are determined to be 1A1g and 2A1g, and their ionization energies are measured to be 5.732+/-0.001 and 5.784+/-0.002 eV, respectively. These neutral complexes have eta6 binding and are in an eclipsed D6h configuration with flat benzene rings. Ionization of the 1A1g and 2A1g neutral states of Ti- and V-bz2 yields the 2B1g and 3B1g ion states, respectively, in a D2h point group with slightly puckered benzene rings. In addition, the binding and structures of these two complexes are compared with other first-row transition metal bis(benzene) sandwiches. 相似文献
19.
State-resolved collision energy dependence of Penning ionization cross sections of acetylene (C2H2) and ethylene (C2H4) with He*(2 3S) metastable atoms was observed in a wide collision energy range from 20 to 350 meV. A recently developed discharge nozzle source with a liquid N2 circulator was employed for the measurements in the low-energy range from 20 to 80 meV. Based on classical trajectory calculations for the energy dependence of the partial ionization cross sections, anisotropic potential energy surfaces for the present systems were obtained by optimizing ab initio model potentials for the chemically related systems Li+C2H2 and C2H4. In the case of C2H2, the global minimum was found to be located around the H atom along the molecular axis with a well depth of 48 meV (ca. 1.1 kcal/mol). On the other hand, a dominant attractive well with a depth of 62 meV (ca. 1.4 kcal/mol) was found in the piCC electron region of C2H4. These findings were discussed in connection with orbital interactions between molecular orbitals of the target molecules and atomic orbitals of the metastable atom. It is concluded that sigma-type unoccupied molecular orbitals of C2H2 and a piCC-type highest occupied molecular orbital of C2H4 play a significant role for the attractive-site preference of sigma direction in C2H2 and pi direction in C2H4, respectively. 相似文献
20.
Zheng XF Wu L Gao DB Chi NY Lin QS Hu JH 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2003,59(8):1751-1755
In the past, the method of reconstitution was used to investigate the interaction between metalloenzymes (containing Zn(II)) and metal ions. In this paper, electron paramagnetic resonance (EPR) has been employed to firstly study the direct interactions between Bacillus subtilis neutral proteinase (BSNP), nuclease P1 and Cu(II) ions added in aqueous solution, respectively. These results show that a dynamic equilibrium exists between the Zn(II) in the active site of native enzymes and the added Cu(II), the added Cu(II) partly replaces the Zn(II), forming Cu(II)-enzyme derivatives. As a result, the activity of the native enzymes is influenced. The influences of pH value on this kind of interaction have also been investigated, and the results demonstrate that the change of pH value has little influence on the system of nuclease P1, but has remarkable influence on BSNP. We firstly obtained the EPR spectra for Cu(II)-enzyme derivatives. In addition, the derivative of Cu(II)-BSNP exists in the solution with two different conformations (I type g(parallel)=2.34, A(parallel) (mT)=13.4; II type g(parallel)=2.25, A(parallel) (mT)=16.1), and this two conformations exchanged each other depending on pH. 相似文献