首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
The mass spectral behavior of five derivatives of the 4-azaphenanthrene series — 1,3-dimethyl-(I), 2,3-dimethyl-(II), 1,2,3,-trimethyl-(III), 1,2,3-trimethyl-8-nitro-(IV), and 1,3-dimethyl-6,7-dinitro-4-azaphenanthrene (V) — was studied. The stabilities of the molecular ions with respect to gragmentation (WM) are higher by a factor of two or more for the methyl-substituted I–III than for nitro derivatives IV and V. The intensity of the [M-H]+ ion peak in the mass spectra of I–V does not depend on the number of methyl groups but only on their positions: the presence of a CH3 group in the 2 position leads to an [M-H]+ ion that is 1.5 times more intense than when there is a methyl group in the 1 position. The molecular ions of I–V do not eliminate HCN molecules; this constitutes evidence for the absence of randomization of their methyl groups. The presence of a CH3 substituent in the 1 or 2 position does not affect the intensity of the [M-CH3]+ ion peaks, while the simultaneous presence of CH3 groups attached to the C1 and C2 atoms increases the intensity of the [M-CH3]+ fragment peak by a factor of two. In the mass spectra of nitro derivatives IV and V, [M-O]+, [M-OH]+, [M-NO]+, and [M-NO2]+ fragments are observed in the first step of the fragmentation of the M+ ion, whereas the [M-CO]+ ion peak characteristic for the dissociative ionization of 1-nitronaphthalene is also observed for 8-nitro-substituted IV.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1365–1369, October, 1977.  相似文献   

2.
Extensive 13C labelling experiments demonstrate that loss of acetylene from metastable [C11H9]+ ions is a complex process, which can be described quantitatively in terms of a four-parameter model. The major reaction path (77.8%) involves scrambling of all 11 carbon atoms. Insight into the reaction details is provided neither by the kinetic energy release associated with the reaction [C11H9]+ → [C9H7]+ + C2H2 nor by the analysis of the collisional activation mass spectra of the resulting [C9H7]+ ions.  相似文献   

3.
The mass spectra of 1,2-diphenyl-pyrazolidine-3,5-dione and twenty-one 4-substituted derivatives are reported. Their fragmentation patterns have been studied by deuterium labelling, exact mass measurements, metastable studies by the defocusing technique and low energy spectra. Hydrogen rearrangements from the 4-position of the heterocycle and/or from the ß-position of the 4-substituent groups, lead to the main primary fragment ions [C12H11N2]+ (m/e 183) as shown by the metastables. The 4,4-d2 derivative shows an appreciable isotope effect even for molecular ions decomposing in the ion source. By comparison with the metastable abundances of competitive reactions, the molecular ions (m/e 252) of the 4-unsubstituted compound appear to be structurally different from the corresponding m/e 252 fragment ions formed from 4-derivatives by the loss of 4-substituent with H rearrangement. If only vinylic or aromatic hydrogen atoms are present, primary cleavage of the heterocyclic ring occurs with loss of OH·, C3O2 and C3HO2. Important rearrangements leading to elimination of C6H6N and C6H7N are typical for unsaturated substituents on position four having allylic hydrogen atoms. Fragment ions, identical to molecular ions of some compounds discussed here, are obtained by electron-impact and/or thermal decompostion of some complex compounds containing more than one 1,2-diphenyl-pyrazolidine-3,5-dione system. The [C6H5N2]+ (m/e 105) and [C6H5]+ (m/e 77) ions are common fragments of all the title compounds. Any hydrogen scrambling reactions between phenyl and heterocycle or 4-substituent groups can be excluded.  相似文献   

4.
The laser desorption mass spectrometry of the oxocarbon squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) and its salts of the form A2C4O4 (A = cation) is described. Both positive and negative ion spectra were obtained. The positive ion spectrum of the acid is characterized by an ion corresponding to loss of CO from [M + H]+. The negative ion spectrum shows an intense [M ? H]? peak in addition to a dimer species. The alkali salt spectra contain [M + A]+ in the positive mode and [M ? A]? and an intense [C4HO4]? in the negative mode. The smaller alkali salts also have an [M + H]+ adduct ion. Unlike the alkali squarates, the ammonium salt shows ions corresponding to losses of neutrals from the molecular adduct in the positive ion spectrum and a dimer species in the negative ion spectrum. Molecular weight information was obtained in all cases. A (bis) dicyanomethylene derivative of potassium squarate was also studied. Some field desorption mass spectrometry results are presented for comparison.  相似文献   

5.
Homoadamantane derivatives can be divided into two groups according to their mass spectra. To the first group belong compounds with electron attracting substituents (COOH, CI, COOCH3, Br); compounds with electron releasing substituents (OCH3, OH, NH3, NHCOCH3) constitute the second group. The most characteristic feature of the first group compounds is the splitting off of the substituent. The hydrocarbon fragment [C11H17]+ thus formed then loses olefin molecules with the formation of corresponding ionic species C11?nH17?2n. The 3-substituted compounds of this group undergo thermal Wagner-Meerwein type rearrangements into adamantane derivatives, resulting in the [C10H15]+ (m/e 135) ion formation; this is the main difference between 1- and 3-substituted homoadamantanes. The series of [CnH2n?6X]+ ions (where X = OCH3, OH, NH2, NHCOCH3, n = 6 to 10) are characteristic of the mass spectra of the second group compounds, the ion [C6H6X]+, [M ? C5H11]+ being the most abundant. The intensity ratio of [M ? C5H11]+ to [M ? C4H9]+ ions is 10:1 for 1-substituted and 3:1 for 3-substituted compounds of this group, allowing the location of the substituent. Some individual features of the spectra are also reported.  相似文献   

6.
Dilute mixtures of C6H6 or C6D6 in He provide abundant [C6H6] or [C6D6] ions and small amounts of [C6H7]+ or [C6D7]+ ions as chemical ionization (CI) reagent ions. The C6H6 or C6D6 CI spectra of alkylbenzenes and alkylanilines contain predominantly M ions from reactions of [C6H6] or [C6D6] and small amounts of MH+ or MD+ ions from reactions of [C6H7]+ or [C6D7]+. Benzene CI spectra of aliphatic amines contain M, fragment ions and sample-size-dependent MH+ ions from sample ion-sample molecules reactions. The C6D6 CI spectra of substituted pyridines contain M and MD+ ions in different ratios depending on the substituent (which alters the ionization energy of the substituted pyridine), as well as sample-size-dependent MH+ ions from sample ion-sample molecule reactions. Two mechanisms are observed for the formation of MD+ ions: proton transfer from [C6D6] or charge transfer from [C6D6] to give M, followed by deuteron transfer from C6D6 to M. The mechanisms of reactions were established by ion cyclotron resonance (ICR) experiments. Proton transfer from [C6H6] or [C6D6] is rapid only for compounds for which proton transfer is exothermic and charge transfer is endothermic. For compounds for which both charge transfer and proton transfer are exothermic, charge transfer is the almost exclusive reaction.  相似文献   

7.
The positive electron impact (EI) and isobutane chemical ionization (CI) mass spectra of six nitramine nitrates were studied with the aid of some accurate mass measurements. In the EI spectra, β fission relative to both the nitramine and nitrate ester is important. In the CI spectra a major ion occurs at [MH – 45]+ and was found to be mainly due to [M + 2H ? NO2]+. All of the compounds except N-(2 hydroxyethyl)-N-(2′,4′,6′-trinitrophenyl)nitramine nitrate gave an [MH]+ ion. The [MH – 45]+ ion in the isobutane CI mass spectra of tetryl is also due to [M + 2H ? NO2]+.  相似文献   

8.
The Mössbauer spectra of the new salt-like complexes of the ferricinium ions [FeIIICp2]+{CoIII[π-(3)-1,2-B9C2H11]2}? (I) with π-sandwich aromatic anions and of the [FeCp2]+[GaCl4]?(II) and [FeCp2] 2 + [MoO4]2? (III) compounds are compared. It is shown that the Mössbauer spectra of these compounds are broadened asymmetric lines whose broadening and asymmetry increase with decreasing temperature. The peculiarities of the spectra are associated with paramagnetic relaxation effects, in particular, with the Blume effect. In I–III, the sign of the electric field gradients on the iron nuclei is negative, while ferrocene exhibits a positive electric field gradient. It is noted that the nature of the anion affects the frequency of spin fluctuations, but has no effect on the electronic state of iron atoms, as well as on the symmetry of its local surrounding in FeCp 2 + . Analysis of the probability of the Mössbauer effect suggests that in compound I the anion-cation interaction is stronger than that in compounds II and III.  相似文献   

9.
The mass spectra of neopentyl alcohol, bromide and chloride and some 13C and 2H labelled analogues have been studied. Most fragmentations of the molecular ions of these compounds occur by simple bond cleavages and do not involve rearrangement before fragmentation. We propose that in the [M ? CH3]+ fragment ions, seven of the eight hydrogen atoms and all four carbon atoms are involved in randomisation when an ethylene molecule is ejected. The eighth hydrogen atom (which comes from a methyl group) is probably associated with the heteroatom. The neopentylcation, observed only in the mass spectrum of the bromide, fragments mainly by loss of an ethylene molecule, also containing randomly selected hydrogen and carbon atoms. The [C4H7]+ ion also was observed to undergo complete atom scrambling.  相似文献   

10.
The mass spectra of many triphenyl/tetraphenyl derivatives of the Group IV and V elements exhibit the processes [M+˙ ? C12H10] and/or [M+˙ ? C6H5· ? C12H10]. These fragmentations are not preceded by hydrogen scrambling between all the phenyl rings. Hydrogen scrambling does occur in certain fragment ions prior to fragmentation in both the positive and negative-ion spectra. The process [M+˙ ? C12H10] occurs in the negative-ion mass spectrum of tetraphenylsilane.  相似文献   

11.
Two series of bonding isomers of Ni(II) coordination compounds with tetradentate quasimacrocyclic ligands based on S-substituted isothiocarbohydrazides were characterized by electron impact (EI) mass spectrometry and by tandem mass spectrometry methods. Conventional EI mass spectra were more isomer specific than metastable ion (MI) and collision induced dissociation (CID) mass spectra of the molecular ions. The MI (and CID) mass spectra of the isomers were very similar. This effect resulted from a facile randomization of Ni–N bonds in the ions possessing low internal energies, prior to their dissociation. The compounds were found to be convenient precursors for coordinatively unsaturated metal-containing ions, [NiLn]+ and [RNiLn]+ (n = 1, 2; L = NCCH3, NCSCH3; R = OH, NO). Most of these species had a structure of mono- or disolvated nickel ion. The dissociation of [HONiNCCH3]+ ions was consistent with the formation of two isomers: one corresponding to the [HONi]+ ion solvated by acetonitrile and the other is a complex of H2O with [NiNCCH2]+. A structure of [HO,Ni,(NCCH3)2]+ ions was best represented by a five-membered cycle formed by two acetonitrile units and the metal atom with the OH group attached to one of the nitrogen atoms.  相似文献   

12.
The mass spectra of 13C-labelled 2-phenylthiophenes and 2,5-diphenylthiophenes were studied. The label distributions for the [HCS]+, [C2H2S], [C8H6], [C9H7]+ and [C7H5]S+ ions from 2-phenylthiophene and the [HCS]+, [C9H7]+, [C7H5S], and [C15H11]+ ions from 2,5-diphenylthiophene were interpreted in terms of both carbon skeletal rearrangements in the thiophene ring and migration of the phenyl substituent. The degree of carbon scrambling in the thiophene ring appeared to be almost independent of the electron beam energy. The formation of some of the fragment ions studied seems to be so fast that no carbon scrambling could be detected at all; in neither case was complete scrambling of the carbon atoms of the thiophene ring observed.  相似文献   

13.
The mass spectra of spiropentane, cyclopentene, 1,3-pentadiene (piperylene), isoprene and some deuterium labelled analogues have been studied. The heats of formation of the molecular ions and the major daughter ions [C5H7]+ and [C4H5]+ have been estimated. Fragmentation of these molecules mostly proceeds via common intermediates in which hydrogen atoms have lost their positional identity. Only spiropentane displays any specific fragmentation behaviour related to its ground state geometry.  相似文献   

14.
The mass spectra of six cis-trans isomeric 1,2,3,4-tetramethylcyclohexanes are discussed. The intensity ratio of [M? CH3]+/[M? C2H5]+ correlates with the strain energies of the stereoisomers. Therefore, the identification of cis-trans isomers is possible by means of their mass spectra. The mass spectra of deuterium labelled compounds demonstrate favoured fragmentation of the axial methyl groups and ring opening between the cis substituted carbon atoms of the cyclohexane.  相似文献   

15.
Chemical ionization (CI) mass spectra of C60-fullerene were studied using 1,2-dibromoethane and 1,2-dichloroethane as CI reagents. The ion-molecule reaction between C60 and C2H4X+ (X=Br and Cl) leads to the formation of (C60+C2H4X)+ adducts. The collision-induced dissociation of the adducts reveal gas phase halo alkylation of C60-fullerence involving the C?C bond formation.  相似文献   

16.
The CH4 chemical ionization (CI) spectra of several keto-steroids are reported as well as the H2 and C3H8CI spectra of a few keto-steroids. [M + H ? H2O]+ is an abundant ion in the CH4CI spectrum of 5α-androstane-17-one and the water loss from the [M + H]+ ions does not involve the hydrogens on C-18 and only involves the C-16 hydrogens to about 10%. The major loss process has not been determined.3-Keto and 17-Keto steroids are readily distinguished by their CH4CI spectra. The effectiveness of substituents for directing attack by [CH5]+ and [C2H5]+ can be estimated:carboxyl > methoxy ? carbonyl > bromo ? chloro > hydroxy. Significant differences are observed in the H2CI spectra of two 5α-vs. 5β-steroids. Propane CI Spectra are similar to methane CI spectra, but show generally less fragmentation.  相似文献   

17.
The electron-impact mass spectra of coordination compounds of nickel(II) with the general formula NiL2, in which the radical anions [C6H5N -N-C(SR)=NR1], where R=CH3 and R=H(I), R=CD3 and R=H(II), R=C2H5 and R=H(III), and R=CH3 and R=C6H5(IV), serve as the ligands, have been studied. In the mass spectra of compounds I–IV the peaks of the molecular ions have the highest intensity among the organometallic fragments. The initial stage of the fragmentation of [M]+. is associated with the formation of the rearrangement ions [NiL + H]+, [NiL + C6H5]+, and [NiL + SR]+, ions, whose appearance becomes understood, if it is taken into account that the removal of one ligand is accompanied by the impairing of spins and the mass spectra of compounds I–IV is the presence of lines for the [NiL]+ ion in them. The dissociative ionization of compounds I–IV is strongly reminiscent of the behavior of ordinary complexes of metals with ligands of the nonradical type. The fragmentation scheme of the molecular ions under the effects of electron impact has been presented and discussed.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 26, No. 3, pp. 368–371, May–June, 1990.  相似文献   

18.
The stereoisomers of the title compounds produce nearly identical electron ionization (EI) mass spectra, which are dominated in the case of the norbornene-condensed derivatives by retro-Diels-Alder (RDA) fragmentation of the hydrocarbon ring. The RDA fragmentation mainly occurs with H transfer and gives rise to [M-C5H5]+. For the norbornane-condensed derivatives, the main fragmentation routes include the formation of [M-C5H7]+ (protonated thiouracil) and [M-C7H9]+ (only from thiazinopyrimidines). The latter species are formed via RDA decomposition of the pyrimidone subunit of the heterocyclic system, a process previously observed for cyclohexane-condensed analogs of these compounds. Only minor differences could be detected between the EI spectra of the diexo and diendo isomers. Under chemical ionization (CI) conditions, the norbornane-condensed compounds produced no significant fragment peaks with either isobutane or methane as reagent gas. In contrast, the isobutane and methane CI spectra of the norbornene-condensed compounds exhibited prominent peaks of [MH-C5H6]+ and [(M+CxHy)-C5H6]+ originating from moderately stereoselective RDA fragmentations. The relative abundances of the RDA ions obtained from the respective stereoisomers with the same reagent gas were consistently different over a range of experimental conditions. The non-occurrence of RDA fragmentation of the thiazinopyrimidine ring under CI conditions suggested that its energy of activation is higher than that for either of the norbornene-ring RDA fragmentations (with or without H transfer) observed under EI and CI conditions.  相似文献   

19.
The charge exchange mass spectra of 14 C6H12 isomers have been determined using [CS2], [COS], [Xe], [CO], [N2] and [Ar] as the major reactant ions covering the recombination energy range from ∼10.2 eV to ∼15.8 eV. From the charge exchange data breakdown graphs have been constructed expressing the energy dependence of the fragmentation of the isomeric [C6H12] molecular ions. The electron impact mass spectra are discussed in relation to these breakdown graphs and approximate internal energy distribution functions derived from photoelectron spectra.  相似文献   

20.
The collisional activation (CA) and charge stripping (CS) mass spectra of the three [C3H4] isomers, allene, propyne and cyclopropene, are reported. The extent of isomerization among these ions prior to collisional excitation depends on their internal energy content, but is small. Each [C3H4] ion structure also can uniquely be generated via appropriate dissociative ionizations. Analysis of mixtures of [C3H4] (daughter) ion structures is, in general, not possible from CA and CS mass spectra alone but may be aided by appearance energy measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号