首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lima EC  Brasil JL  Vaghetti JC 《Talanta》2003,60(1):103-113
Single noble metal permanent modifiers such as, Rh, Ir, and Ru, as well as mixed tungsten plus noble metal (W-Rh, W-Ru, W-Ir) permanent modifiers thermally deposited on the integrated platform of transversally heated graphite atomizer were employed for the determination of arsenic in sludges, soils, sediments, coals, ashes and waters by electrothermal atomic absorption spectrometry. Microwave digests of solid samples and water samples were employed for obtaining the analytical characteristics of the methods with different permanent modifiers. The performance of the modifiers for arsenic determination in the real samples depended strongly on the type of permanent modifier chosen. The single noble metal (Rh, Ir and Ru) permanent modifiers were suitable for the analyte determinations in simpler matrices such as waters (recoveries of certified values 95-105%), but the analyte recoveries of certified values in sludges, soils, sediments, coals, and ashes were always lower than 90%. On the other hand, for the determination of arsenic, using W-Rh, W-Ru, and W-Ir permanent modifiers presented recoveries of certified values within 95-105% for all the samples. Long-term stability curves obtained for the determination of arsenic in environmental samples with different permanent modifiers (Rh, Ir, Ru, W-Rh, W-Ir, W-Ru) showed that the improvement in the tube lifetime depends on the tungsten deposit onto the platform. The tungsten plus noble metal permanent modifier presents a tube lifetime of at least 35% longer when compared with single permanent modifier. The results for the determination of As employing different permanent modifiers in the samples were in agreement with the certified reference materials, since no statistical differences were found after applying the paired t-test at the 95% confidence level.  相似文献   

2.
Iridium and ruthenium, alone and in combination with tungsten, thermally deposited on the platform of a transversely heated graphite tube, were investigated for their suitability as permanent chemical modifiers for the determination of cadmium in coal slurries by electrothermal atomic absorption spectrometry (ET AAS). The conventional mixed palladium and magnesium nitrates (Pd–Mg) modifiers, added in solution, were also investigated for comparison. The latter one showed the best performance for aqueous solutions, and the mixed W–Ir and W–Ru permanent modifiers had the lowest stabilizing power. All of the investigated modifiers lost some of their stabilizing power when coal slurries were investigated. The Pd–Mg modifier, pure Ir and Ru, and a mixture of 300 μg W + 200 μg Ir could stabilize Cd at least to a pyrolysis temperature of 600 °C, whereas all the other combinations already failed at temperatures above 500–550 °C. Additional investigations of the supernatant liquid of the slurries supported the assumption that the high acid concentration of the slurries and/or a concomitant leaching out of the coal might be responsible for the reduced stabilizing power of the modifiers. The maximum applicable pyrolysis temperature of 600 °C was not sufficient to reduce the background absorption to a manageable level in the majority of the coal samples. High-resolution continuum source ET AAS revealed that the continuous background absorption was exceeding values of A = 2, and was overlapping with the analyte signal. Although the latter technique could correct for this background absorption, some analyte was apparently lost with the rapidly vaporizing matrix so that the method could not be considered to be rugged. A characteristic mass of 1.0 pg and a detection limit of 0.6 ng g− 1 could be obtained under these conditions.  相似文献   

3.
Different chemical modifiers for use with electrothermal atomic absorption spectrometry (ET AAS) were investigated in relation to determining the selenium in human urine samples. The samples were diluted in a solution containing 1% v/v HNO3 and 0.02% m/v cetyltrimethylammonium chloride (CTAC). Studying the modifiers showed that the use of either Ru or Ir as the permanent modifier gave low sensitivity to Se and the peak shape was very noisy, while Zr or Rh gave no peak at all. The same occurred when Zr was used in solution. For mixtures of permanent modifiers, Ir plus Rh or Zr plus Rh gave very low sensitivity, Zr plus Rh with co-injection of Ir in solution was also not efficient, Zr plus Rh in solution gave good sensitivity, but the best results were obtained with a mixture of Zr and Rh as the permanent modifier and co-injection of Rh in solution. Using this last modifier, the following dilutions with the HNO3 and CTAC were studied: 1:1, 1:2, 1:3 and 1:4. The best dilution was 1:1, which promoted good sensitivity and a more defined peak shape and made it possible to correct for the background using a deuterium arc lamp. Under these conditions, a characteristic mass of 26±0.2 pg was obtained for Se in aqueous solution. Six certified urine samples were analyzed using matrix matching calibration and the measured concentrations were in agreement with the certified values, according to a t-test at the 95% confidence level. Recovery tests were carried out and the recoveries were in the range 100–103%, with relative standard deviation better than 9%. The limit of detection (LOD, 3 sd, n=10) was 3.0 μg L−1 in the sample. The treated graphite tube could be used for at least 600 atomization cycles without significant alteration of the analytical signal.  相似文献   

4.
Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 μm, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 μg of each modifier was applied using 25 injections of 20 μl of modifier solution (500 mg l−1), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55–60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg−1 were satisfactory for a routine procedure.  相似文献   

5.
《Analytical letters》2012,45(5-6):592-602
The aim of the present work was to develop and validate a rapid and accurate method of arsenic determination in leachate samples by electrothermal atomic absorption spectrometry. Leachate samples from sanitary landfills are considered difficult samples to analyze due to severe matrix interferences. A comparative study of various chemical modifiers was performed: Pd, Mg, Au, Pt, Ru, Rh, Ir, C6H8O7 (citric acid), Pd + Mg, Ir + Mg, and the permanent modifier Zr – Ir.

Among the modifiers tested, the mixture 5 µg Ir + 40 µg Mg provided the best performance, followed by the permanent modifier Zr – Ir (a coating of 200 µg Zr + 20 µg Ir). The permanent modifier was finally chosen due to the decreased background signal and sufficient sensitivity.

In order to investigate the presence of matrix interference and exploit the possibility of performing calibrations by simple aqueous solutions, calibration with aqueous standards, matrix matched standards and with standard additions was performed. It was observed that, in the presence of the Zr – Ir permanent modifier, the slopes of the calibration curve and the matrix-matched/standard addition curves were statistically different (checked by t-test). The recoveries from matrix-matched calibrations for three concentration levels were ranged between 96.4% and 100%. Precision experiments were also performed and the relative standard deviation (%RSD) for four different concentrations was ≤10%. The method was applied to the determination of arsenic in leachate samples collected in the solid waste sanitary landfill of Ano Liossia, Attika, Greece.  相似文献   

6.
A comparative study of various potential chemical modifiers (Au, Ba, Be, Ca, Cr, Ir, La, Lu, Mg, Ni, Pd, Pt, Rh, Ru, Sr, V, W, and Zr), and different ‘coating’ treatments (Zr, W, and W+Rh) of the pyrolytic graphite platform of a longitudinally heated graphite tube atomizer for thermal stabilization and determination of boron was undertaken. The use of Au, Ba, Be, Cr, Ir, Pt, Rh, Ru, Sr and V as modifiers, and of W+Rh coating produced erratic, and noisy signals, while the addition of La, Ni and Pd as modifiers, and the W coating had positive effects, but with too high background absorption signals, rendering their use unsuitable for boron determination even in aqueous solutions. The atomic absorption signal for boron was increased and stabilized when the platform was coated with Zr, and by the addition of Ca, Mg, Lu, W or Zr as modifiers. Only the addition of 10 μg of Zr as a modifier onto Zr-treated platforms allowed the use of a higher pyrolysis temperature without analyte losses. The memory effect was minimized by incorporating a cleaning step with 10 μl of 50 g l−1 NH4F HF after every three boron measurements. The addition of 10 μl of 15 g l−1 citric acid together with Zr onto Zr-treated platforms significantly improved the characteristic mass to m0=282 pg, which is adequate for biological samples such as urine and bone, although the sensitivity was still inadequate for the determination of boron in blood of subjects without supplementary diet. Under optimized conditions, the detection limit (3σ) was 60 μg l−1. The amount of boron found in whole blood, urine and femur head samples from patients with osteoporosis was in agreement with values previously reported in the literature.  相似文献   

7.
Permanent modifiers (V, Ir, Ru, V-Ir, V-Ru, and W-V) thermally coated on to platforms of pyrolytic graphite tubes were employed for the determination of Cd, Pb, and Zn in botanic and biological slurries by electrothermal atomic absorption spectrometry (ETAAS). Conventional Pd + Mg(NO3)2 modifier mixture was also used for the determination of analytes in slurries and digested samples. Optimum masses and mass ratios of permanent modifiers for Cd, Pb, and Zn in slurry sample solutions were investigated. The 280 μg of V, 280 μg of V + 200 μg of Ir, 280 μg of V + 200 μg of Ru or 240 μg of W + 280 μg of V in 0.2% (v/v) Triton X-100 plus 0.5% (v/v) HNO3 mixture was found as efficient as 5 μg of Pd + 3 μg of Mg(NO3)2 modifier mixture for obtaining thermal stabilization, and for obtaining best recoveries. Optimization conditions of analytes, such as pyrolysis and atomization temperature, characteristic masses and detection limits, and atomization and background peak profiles were studied with permanent and 5 μg of Pd + 3 μg of Mg(NO3)2 conventional modifiers and compared with each other. The permanent V-Ir, V-Ru, and W-V modifiers remained stable for approximately 250-300 firings when 20 μl of slurries and digested samples were delivered into the atomizer. In addition, the mixed permanent modifiers increase the tube lifetime by 50-95% when compared with untreated platforms. The characteristic masses and detection limits of analytes (dilution factor of 125 ml g−1) obtained with V-Ir based on integrated absorbance as example for 0.8% (m/v) slurries were 1.0 pg and 3 ng g−1 for Cd, 18 pg and 17 ng g−1 for Pb, and 0.7 pg and 4 ng g−1 for Zn, respectively. The results of analytes obtained by employing V-Ir, V-Ru, and W-V permanent modifier mixtures in botanic and biological certified and standard reference materials were in agreement with the certified values of reference materials.  相似文献   

8.
Gupta JG 《Talanta》1993,40(6):791-797
A new method has been developed for rapid determination of mug/g and ng/g amounts of noble metals in silicate rocks, ores and metallurgical samples by attacking with hydrofluoric acid and aqua regia, preconcentration by ion-exchange chromatography and measuring in a simultaneous multi-element graphite furnace atomic absorption spectrometer equipped with a polarized Zeeman background correction device which eliminated interferences from any incompletely separated common elements. The method was tested for Ru, Rh, Pt, Ir, Pd, Ag and Au with three Canadian certified reference materials, and then applied to the determination of ng/g amounts of these elements in four new Canadian candidate reference materials.  相似文献   

9.
Volynsky AB  Wennrich R 《Talanta》2003,59(2):277-286
The effect of pre-reduced Pt and Ir modifiers towards simultaneous determination of As, Se and In in a sodium sulphate matrix was investigated. In spite of application of very isothermal THGA atomizer, negative influence of the matrix is pronounced. The efficiency of iridium modifier is somewhat higher than that of platinum modifier. However compared to palladium modifier both are significantly less effective in sulphate media. Taking into account our previous data, effectiveness of platinum group metal (PGM) modifiers in the determination of As, Se and In in the presence of sodium sulphate increases in the order Ru<Rh≈Pt<Ir<Pd. This order is opposite to the data on enthalpy of formation of PGM sulphides. This supports our hypothesis that effectiveness of PGM modifiers in the presence of sulphate matrix is determined mainly by stability of the corresponding sulphides. Efforts to enhance the effectiveness of Pt modifier mixing it with small (10-20%) amounts of Pd, Rh or Ir were not successful. Although mixture containing equal amounts of Pd, Pt, Rh and Ru is relatively effective, pure pre-reduced Pd is the best modifier for the simultaneous determination of As, Se and In in a sulphate media.  相似文献   

10.
Palladium, iridium, and rhodium are evaluated as possible chemical modifiers in the determination of As in digest solutions of biological materials (human hair and clam) by tungsten coil electrothermal atomic absorption spectrophotometry (TCA-AAS). The modifier in solution was applied onto the coil and thermally pre-reduced; the pre-reduction conditions, the amount of modifier, and the thermal program were optimized. Palladium was not satisfactory, whereas Ir and Rh were effective modifiers and rendered better relative sensitivity for As by a factor of 1.4 and 1.9, respectively compared to the case without modifier. Upon optimization of thermal conditions for As in pre-reduced Ir (2.0 µg) and Rh (2.0 µg) modifiers and in the digest solutions of the study matrices, Rh (2.0 µg) was more effective modifier and was selected as such. The mean within-day repeatability was 2.8% in consecutive measurements (25–100 µg L–1) (3 cycles, each of n=6) and confirmed good short-term stability of the absorbance measurements. The mean reproducibility was 4.4% (n=20 in a 3-day period) and the detection limit (3 blank/slope) was 29 pg (n=15). The useful coil lifetime in Rh modifier was extended to 300–400 firings. Validation was by determination of As in the certified reference material (CRM) of Oyster tissue solution with a percentage relative error (E rel%) of 2% and percentage relative standard deviation (RSD%) of 3% (n=4), and by analytical recovery of As spiked in CRM of human hair [94±8% (n=4)]. The methodology is simple, fast (sample readout frequency 21 h–1), reliable, of low cost, and was applied to the determination of As in hair samples of exposed and unexposed workers.  相似文献   

11.
M. Vilar 《Talanta》2007,71(4):1629-1636
Different analytical methods for the determination of lead in Orujo spirits by electrothermal atomic absorption spectrometry (ETAAS) were developed using permanent modifiers (W, Ir, Ru, W-Ir and W-Ru) thermally deposited on platforms inserted in pyrolitic graphite tubes and Pd-Mg(NO3)2 conventional modifier mixture. In all cases, the Pb determination was performed without any sample pretreatment or preconcentration steps. The comparison between the chemical modifiers employed has been made in terms of pyrolysis and atomization temperatures, characteristic masses, detection limits, and atomization and background signal shapes. The limits of detection obtained were 0.375, 0.387, 0.109, 0.251 and 0.267 ng mL−1 for W, Ir, Ru, W-Ir and W-Ru, respectively and 0.710 ng mL−1 for Pd-Mg(NO3)2. The characteristic masses were 14.1, 11.2, 5.6, 8.3 and 9.3 pg for W, Ir, Ru, W-Ir and W-Ru, respectively and 22.2 pg for Pd-Mg(NO3)2. For all the developed procedures using the different modification systems, the relative standard deviations (<10%) and the analytical recoveries (95-103%) were acceptable. The more suitable methods for Pb determination in distillate spirits were those using permanent modifiers in contrast with classical Pd-Mg(NO3)2. The best analytical performance was achieved for W, Ir and W-Ir methods, which were applied to lead determination in Orujo spirit samples from Galicia (NW Spain). The Pb concentrations found in the analyzed samples were comprised in the range (<LOD to 1.5 μg mL−1).  相似文献   

12.
A flow injection online displacement solid-phase extraction (DSPE) via magnetic immobilization of mercapto-functionalized magnetite microspheres onto the inner walls of a knotted reactor (KR) coupled with inductively coupled plasma mass spectrometry was developed for selective preconcentration and determination of trace noble metals (Ru, Rh, Pd, Pt, Ir and Au) in complex matrices. Online DSPE of 2.7 mL aqueous solution gave the enhancement factors of 32-46 for the six noble metals in comparison with direct nebulization of aqueous sample solution, and the detection limits (3 s) of 2.1 ng L(-1) for Ru, 1.9 ng L(-1) for Rh, 2.5 ng L(-1) for Pd, 1.8 ng L(-1) for Ir, 1.9 ng L(-1) for Pt and 1.7 ng L(-1) for Au. The sample throughput of the developed method was about 20 samples h(-1), and the relative standard deviation for eleven replicate determinations of the noble metals at the 30 ng L(-1) level ranged from 1.2% to 2.1%. The recoveries of Ru, Rh, Pd, Pt, Ir and Au still maintained 90% even after successive 140 cycles of DSPE. The developed method was successfully applied to selective determination of trace Ru, Rh, Pd, Pt, Ir and Au in complex matrices.  相似文献   

13.
A method for direct determination of cadmium, chromium, copper and lead in sediments and soil samples by electrothermal atomic absorption spectrometry using Zr, Ir, etylenediamine acetic acid (EDTA), Zr + EDTA, Ir + EDTA, Zr + Ir and Zr + Ir + EDTA as chemical modifiers in 0.5% (v/v) Triton X-100 plus 0.2% (v/v) nitric acid mixture used as diluent was developed. The effects of mass and mass ratio of modifiers on analytes in sample solutions were studied. The optimum masses and mass ratios of modifiers: 20 microg of Zr, 4 microg of Ir, 100 microg of EDTA and 20 microg of Zr + 4 microg of Ir + 100 microg of EDTA, were used to enhance the analyte signals. Pyrolysis and atomization temperatures, atomization and background absorption profiles, characteristic masses, and detection limits of analytes in samples were compared in the presence or absence of a modifier. The detection limits and characteristic masses of analytes in a 0.5% (m/v) dissolved sample (dilution factor of 200 ml g(-1)) obtained with Zr + Ir + EDTA are 8.0 ng g(-1) and 1.2 pg for Cd, 61 ng g(-1) and 4.3 pg for Cr, 32 ng g(-1) and 23 pg for Cu, and 3.4 ng g(-1) and 19 pg for Pb, respectively. The Zr + Ir + EDTA modifier mixture was found to be preferable for the determination of analytes in sediment and soil-certified and standard reference materials. Depending on the sample type, the percent recoveries of analytes were increased from 81 to 103% by using the proposed modifier mixture; the results obtained are in good agreement with the certified values.  相似文献   

14.
The stabilizing role of permanent iridium modifier deposited on tungsten-treated (WTP) and zirconium-treated (ZrTP) platforms of transversely heated graphite atomizer (THGA) was studied in detail by electrothermal atomic absorption spectrometry (ETAAS) and different surface techniques in model experiments for Ag, Bi and Te. The comparison of the stabilizing efficiency of permanent Ir modifier on WTP and ZrTP and each of the single components, reveals the better effect of Ir on WTP and Ir itself. The extent of analyte losses during pre-atomization and the strength of analyte association with the modifier were estimated by the plotting of `differential vaporization curves'. The existence of double peaks of Ag, Bi and Te in WTP and Ir on WTP was confirmed and possible reasons for their formation were discussed. The absorbance profiles presented as differential curves reveal an existence of at least two different types of precursors determining processes of atom generation. The observed differences in the behavior of Ir permanent modifier on WTP and ZrTP, respectively, were explained by the different extent of iridium–tungsten and iridium–zirconium interaction and surface distribution. XRF, ESCA and SEM studies reveal non-uniform distribution of the modifier on the graphite substrate and the presence of oxide containing species on the surface.  相似文献   

15.
Performance of graphite platforms coated with Ir, Rh, and a mixture of both, as permanent modifiers for Ag, As, Bi, Cd, and Sb, was evaluated. The coating process is very simple: a solution containing Ir, Rh, or a mixture of both is pipetted on the platform inserted in a graphite tube, and this is submitted to a temperature program. High pyrolysis temperatures are allowed, especially for As and Bi, 1400°C, in the Ir + Rh-coated platform. The sensitivity remains about the same for all analytes with different coatings, except for As in the Ir-coated platform, for which a remarkable gain was obtained in comparison to the other coatings. The lifetimes of the treated tubes were in the range 50 to more than 1000 cycles, being especially long for Sb and Ag in the Rh-coated platform, more than 600 and 1000 cycles, respectively. The Rh coating could not be used for Bi and Cd. Analysis of a certified reference water and of acid oyster tissue digests showed the absence of interference and good precision. Advantages of the permanent coatings are the possibility of low blanks byin situcleaning of the modifier and shorter analysis time.  相似文献   

16.
Molybdenum, Ir, Ru, Mo-Ir, Mo-Ru thermally coated on to platforms inserted in pyrolytic graphite tubes as permanent modifiers and Pd + Mg(NO3)2 conventional modifier mixture have been employed for the determination of cadmium and lead in dissolved sediments and soil samples by electrothermal atomic absorption spectrometry (ETAAS). Optimum masses and mass ratios of permanent modifiers for the analysis of Cd and Pb in sample solutions have been investigated. The 280 μg of Mo, 200 μg of Ir, 200 μg of Ru, 280 μg of Mo + 200 μg of Ir or 280 μg of Mo + 200 μg of Ru has been found as efficient as 5 μg of Pd + 3 μg of Mg(NO3)2 for increasing thermal stabilization of analytes and for decreasing the most serious interferences. Pyrolysis and atomization temperatures, atomization and background signal shapes, characteristic masses and detection limits of analytes in dissolved samples with or without permanent and conventional modifiers have been compared. The detection limits and characteristic masses obtained with Mo-Ir coated platform are 0.01 μg g−1 and 1.1 pg for Cd and 0.09 μg g−1 and 19 pg for Pb, respectively. Long-term stabilities for analytes in samples with Mo, Mo-Ir, Mo-Ru and Pd + Mg(NO3)2 have been studied. Cadmium and lead contents have been determined in certified and standard reference materials by using optimum conditions investigated and the results obtained with Mo-Ir or Mo-Ru were in agreement with the values of certified reference materials.  相似文献   

17.
The electrothermal atomization of the volatile elements arsenic, antimony and thallium from a refractory metal platform consisting of a tungsten coil and/or a refractory metal foil with the dimensions of a conventional graphite platform was studied. Several combinations of refractory metal platforms were investigated, as follows: W platform; Ta platform; W coil; W coil on a W platform and W coil on a Ta platform. The best combination for these elements as regards both thermal stabilization and sensitivity is the W coil on a Ta platform. Thermal stabilization is also achieved with a W coil on a W platform. The presence of Pd-containing chemical modifier favors the thermal stabilization of the analytes. The sufficient amount is 2 micrograms of Pd. The maximal temperatures of pyrolysis are higher (arsenic, antimony) or equal (thallium) to those when using different chemical modifiers, added as solutions. It may be concluded, that the refractory metal platforms act as "built-in modifiers". They are suitable for the determination of arsenic, antimony and thallium in samples of complex matrix composition where high thermal stability of the analytes during the pyrolysis step is required.  相似文献   

18.
An automated analytical system for the determination of As combining an electrolytic hydride generator and a graphite furnace atomic absorption spectrometer has been developed. To investigate the trapping efficiency of permanent modifiers, the end-heated graphite tubes have been impregnated with Ir and mixed Pd/Ir pre-reduced modifiers, respectively, or pre-coated with Ir by electron beam evaporation under high vacuum. Furthermore, the influence of the modifier mass on the shape of the absorption signal has been studied and the performance of the modifier has been discussed. Using the pre-coated graphite tube the calculated detection limit (3s criteria ) for As was 3 pg and 15 ng/L (200 μL sample volume, two preconcentration steps) for the absolute mass and the concentration, respectively. The long-term stability of the permanent modifiers and their physical and or chemical changes during the lifetime of the tube have been observed.  相似文献   

19.
This work describes the development of a method to determine cadmium in coal, in which iridium is used as a permanent chemical modifier and calibration is performed against aqueous standards by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). This new instrumental concept makes the whole spectral environment in the vicinity of the analytical line accessible, providing a lot more data than just the change in absorbance over time available from conventional instruments. The application of Ir (400 g) as a permanent chemical modifier, thermally deposited on the pyrolytic graphite platform surface, allowed pyrolysis temperatures of 700 °C to be used, which was sufficiently high to significantly reduce the continuous background that occurred before the analyte signal at pyrolysis temperatures <700 °C. Structured background absorption also occurred after the analyte signal when atomization temperatures of >1600 °C were used, which arose from the electron-excitation spectrum (with rotational fine structure) of a diatomic molecule. Under optimized conditions (pyrolysis at 700 °C and atomization at 1500 °C), interference-free determination of cadmium in seven certified coal reference materials and two real samples was achieved by direct solid sampling and calibrating against aqueous standards, resulting in good agreement with the certified values (where available) at the 95% confidence level. A characteristic mass of 0.4 pg and a detection limit of 2 ng g–1, calculated for a sample mass of 1.0 mg coal, was obtained. A precision (expressed as the relative standard deviation, RSD) of <10% was typically obtained when coal samples in the mass range 0.6–1.2 mg were analyzed.Dedicated to the memory of Wilhelm Fresenius  相似文献   

20.
The surface and sub-surface distribution of noble metals (after electrodeposition of 600 μg or thermal reduction of 10 μg as modifiers), as well as Sb, As and Se (200 ng) as analytes after their deposition on the graphite surface was investigated using secondary ion mass spectrometry (SIMS) in the dynamic mode. This permitted simultaneous observation of the depth profile distribution of modifier and analyte with a depth resolution of down to approximately 25 nm, limited however, by the surface roughness of the samples. Hydride generation was intentionally used for this purpose because in this approach the investigated system: graphite–modifier with added analyte is free from matrix components. This was essential for the evaluation of this novel approach using SIMS for surface analysis. Investigations concerning the distribution of analytes were performed on the graphite surface modified with palladium, iridium or rhodium. It was found that after deposition at 400 °C, all analytes partially penetrated the graphite surface and their distribution overlaps the distribution pattern of the noble metals. The degree of penetration differs for each analyte and depends on the modifier used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号