首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cabin air filters consisting of activated carbon infiltrated with nanoscopic metal oxide particles as catalysts have been investigated for the reduction of nitrogen oxides within motor-car cabins. In that concept, nitrogen dioxide is adsorbed on the activated carbon during operation conditions of the car and then reduced by the catalysts within the pores. The conversion has to take place at ambient temperature during the relatively long standstill periods of motor-cars. In this article we are going to discuss the manufacturing of the adsorbents by “liquid phase infiltration” and their characterization by techniques, such as nitrogen sorption analysis, X-ray diffraction, thermogravimetry, energy dispersive X-ray spectroscopy, and electron microscopy. The new adsorbents were evaluated in repeated breakthrough tests using NO2 (4 ppmV as feed concentration) in humid air as the adsorptive. In the intermittent rest periods of varying duration the volume flow through the fixed bed of adsorbent was stopped. The measured breakthrough curves indicate a catalytic conversion of the nitrogen dioxide in the filter beds.  相似文献   

2.
The reduction of nitric oxide (NO) over Cu/ACFs, prepared by copper electroplating, has been studied. It is found that copper content on the ACFs increases with increasing plating time (up to 45 wt%), while the textural properties including specific surface areas and total pore volumes decrease. As an experimental result, the NO reduction efficiency is increased in all of the Cu/ACFs, and it is confirmed that NO is converted into nitrogen and oxygen on the Cu/ACF surfaces (at 500 degrees C). Especially, the Cu metals on the ACF surfaces scavenge oxygen by oxidizing themselves into Cu2O and finally CuO as a reductant. It is indicated that copper metals on the Cu/ACFs play a major role in the NO removal in this system.  相似文献   

3.
The adsorption isotherms of Cu(II) ions from aqueous solutions in the concentration range 40–1000 mg l−1 on two samples of granulated and two samples of activated carbon fibres containing varying amounts of associated oxygen have been reported. The adsorption isotherms are type I of BET classification showing initially a rapid adsorption tending to be asymptotic at higher concentrations. The amounts of oxygen associated with the carbon surface has been enhanced by oxidation with nitric acid and ammonium persulphate in the solution phase and with oxygen gas at 350°C and decreased by degassing of the oxidized carbon samples at 400, 650 and 950°C. The adsorption of Cu(II) ions increases on oxidation and decreases on degassing. The increase in adsorption on oxidation depends on the nature of the oxidative treatment while the decrease in adsorption on degassing depends on the temperature of degassing. This has been attributed to the increase in the carbon–oxygen acidic surface groups on oxidation and their decrease on degassing. Suitable mechanisms consistent with the results have been proposed.  相似文献   

4.
Several series of activated carbons prepared by catalytic and noncatalytic gasification and subsequent deposition of pyrocarbon by pyrolysis of methylene chloride or n-amyl alcohol were studied by FTIR, chromatography, and adsorption methods using nitrogen and probe organics (explosives). The relationships between the textural characteristics of carbon samples and the recovery rates (eta) of explosives on solid-phase extraction (SPE) using different solvents for their elution after adsorption were analyzed using experimental and quantum chemical calculation results. The eta values for nitrate esters, cyclic nitroamines, and nitroaromatics only partially correlate with different adsorbent parameters (characterizing microporosity, mesoporosity, pore size distributions, etc.), polarity of eluting solvents, or characteristics of probe molecules, since there are many factors strongly affecting the recovery rates. Some of the synthesized carbons provide higher eta values than those for such commercial adsorbents as Hypercarb and Envicarb.  相似文献   

5.

In this study, the performance of modified adsorbents obtained from activated carbon for the adsorption of thorium(IV) ions from aqueous media was investigated. The analytical and spectroscopic methods such as FT-IR, BET, SEM and UV–Vis were used to examine the properties of the modified materials. According to the analysis results, the both adsorbents had large surface areas after modification. Then, temperature, pH, mixing time and solution concentration parameters were observed to determine optimum thorium adsorption conditions on modified materials. The obtained results from the experiments were applied different three kinetic models and adsorption isotherms and thermodynamic parameters were calculated and then all of the results were interpreted. The adsorption process for both adsorption systems was observed to be compatible with the pseudo-second-order kinetic model. The adsorption equilibrium data were best described by the Langmuir model for modified adsorbent with KMnO4 and by the Freundlich model for modified adsorbent with NaOH. Furthermore, the calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed that the both adsorption processes were endothermic and spontaneous. The data show that modified adsorbents can be used as influential and low-cost adsorbents to remove thorium ion. Modified new adsorbents were highly selective for thorium ion in competitive adsorption studies.

  相似文献   

6.
Two different types of modification of activated carbon, by treatment with concentrated solution of HNO3 and outgassing treatment at high temperature, were studied in order to obtain the most effective adsorption of chromium(VI) ions from water solution. The basic parameters affecting the adsorption capacity of Cr(VI) ions on modified activated carbons were studied in details and the effect of modifications of activated carbons has been determined by studying the initial runs of adsorption isotherms. The obtained Cr(VI) adsorption isotherms were well fitted in the Freundlich equation. The reduction of Cr(VI) to Cr(III) and further ion exchange mechanism of adsorption onto oxidizing activated carbon and surface precipitation to Cr(OH)3 in case of outgassing activated carbon were found as the main adsorption mechanisms of Cr(VI) ions onto modified activated carbons. Presence of chlorides and nitrates in studied adsorption system strongly decreased the adsorption ability of Cr(VI) onto outgassing activated carbon and mechanism of this behavior is proposed.  相似文献   

7.
The wood-based activated carbon, either as received or oxidized with nitric acid, was exposed to dimethylamine vapors. This modification was expected to introduce nitrogen groups. Then, the modified samples were used as adsorbents of NO(2) under dynamic conditions. Both NO(2) breakthrough curves and the NO concentration curves were recorded. The samples before and after exposure to NO(2) were characterized using adsorption of nitrogen, elemental analysis, potentiometric titration, FTIR, and thermal analysis. Modifications with amines resulted in an increase in NO(2) adsorption and in a decrease in NO emission. The effects were more visible when oxidation was used as a pretreatment of the carbon surface. This process increased the incorporation of nitrogen to the carbon matrix via acid-based reactions resulting in the formation of amides and amine carboxylic salts. Besides this, dimethylamine was strongly adsorbed on the carbon surface via hydrogen bonding with oxygen-containing groups. When the samples were exposed to nitrogen dioxide, there was an indication that nitramine and nitrosoamine were formed in the reactions of NO(2) with either amides or amines. In the reactions of amines with NO, nitrosoamines are the likely products. As a next step, the surface of the carbon matrix is reoxidized by NO(2), which is accompanied by the release of NO.  相似文献   

8.
A series of activated carbons with varied surface chemistry, obtained by wet oxidation and thermal treatment, was used for the removal of penicillin from low concentration aqueous solution. It was found that the carbon surface chemistry favors the degradation of the antibiotic, giving rise to various intermediates detected both in solution and in the adsorbed phase (deposited with the pore structure of the activated carbons). The confinement of penicillin molecules entrapped in the nanopores of activated carbons of acidic nature accelerates their degradation compared to that one in the bulk solution, which can be linked the strong local pH fall inside the pores. Degradation also takes place in activated carbons of basic pH, although the nature and partition of the intermediates formed differ from those in the acidic carbons. In both cases most of the breakdown products do not present therapeutic activity.  相似文献   

9.
Direct electrochemical reduction ofp-nitrophenol (PNP) was investigated on a room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (CILE). The cathodic peak potential was positively shifted and the peak currents were increased compared to that obtained on traditional carbon paste electrode (CPE). The results indicated that the presence of ionic liquid BPPF6 on the electrode surface showed excellent catalytic ability to the electrochemical reduction of PNP. The electrochemical behaviors of PNP on the CILE were investigated by cyclic voltammetry and the conditions such as the scan rate, the buffer pH, the substrate concentration were optimized. The electrochemical parameters were further calculated with the results of the electron transfer number (n), the charge-transfer coefficient (α) and the surface concentration (Гr) as 1.76, 0.37 and 2.47 × 10^-9 mol/cm^2, respectively, for the selected reductive peak. The results indicated that PNP showed an irreversible adsorption-controlled electrode process on the CILE.  相似文献   

10.
Two commercial activated carbons with differences in their superficial chemistry, one granular and the other pelletised, were modified for use in phenol and 2,4-dinitrophenol adsorption. In this paper, changes to the activated carbon surface will be evaluated from their immersion calorimetry in water and benzene, and they will then be compared with Area BET, chemical parameters, micropore size distributions and hydrophobicity factors of the modified activated carbons. The activated carbons were modified using 60 % solutions of phosphoric acid (H3PO4), nitric acid (HNO3), zinc chloride (ZnCl2) and potassium hydroxide (KOH); the activated carbon/solution ratio was 1:3 and impregnation was conducted 291 K for a period of 72 h before samples were washed until a constant pH was obtained. Water immersion calorimetry showed that the best results were obtained from activated carbons modified with nitric acid, which increased from ?10.6 to ?29.8 J g?1 for modified granular activated carbon, and ?30.9 to ?129.3 J g?1 for pelletised activated carbon. Additionally, they showed the best results in phenol and 2.4-dititrophenol adsorption. Those results indicate that impregnation with nitric acid under the employed conditions could generate a greater presence of oxygenated groups on their surface, which favours hydrogen bond formation and the increased adsorption of polar compounds. It should also be noted that immersion enthalpy in benzene for modified activated carbon with nitric acid is the method with the lowest value, which is consistent with the increased presence of polar groups on its surface. Regarding hydrophobicity factors, it was observed that granular carbons modified with nitric acid and potassium hydroxide have the lowest ratios, indicating greater interaction with water.  相似文献   

11.
Active carbon supported copper oxides were used in NO reduction. The conversions of NO reduction depends strongly on surface oxygen-containing groups on the active carbons, among them the carboxyls and lactones favored remarkably the NO reduction. However, hydrochloric acid treatment led to the decomposition of the carboxyls and lactones on C2 and C3, decreasing their reactivities for NO reduction. Concentrated HNO3 treatment of active carbon produced higher conversions of NO reduction at relatively low temperatures due to the marked increase in the amounts of the carboxyls and lactones.  相似文献   

12.
13.
Energetics of methane adsorption on microporous activated carbons   总被引:1,自引:0,他引:1  
The influence of microporous carbon surface oxidation on energetics of methane adsorption at 308 K is discussed. Obtained adsorption heats and integral molar entropies of the adsorbate show that microporous carbon surface oxidation changes the methane adsorption process. This is probably resulted by the existence of an endothermic effect during adsorption in oxidized carbon micropores.  相似文献   

14.
Direct electrochemical reduction of p-nitrophenol(PNP)was investigated on a room temperature ionic liquid N-butylpyridinium hexafluorophosphate(BPPF6)modified carbon paste electrode(CILE).The cathodic peak potential was positively shifted and the peak currents were increased compared to that obtained on traditional carbon paste electrode(CPE).The results indicated that the presence of ionic liquid BPPF6 on the electrode surface showed excellent catalytic ability to the electrochemical reduction of PNP.The electrochemical behaviors of PNP on the CILE were investigated by cyclic voltammetry and the conditions such as the scan rate,the buffer pH,the substrate concentration were optimized.The electrochemical parameters were further calculated with the results of the electron transfer number(n),the charge-transfer coefficient(α)and the surface concentration(ΓΥ)as 1.76,0.37 and 2.47×10-9 mol/cm2,respectively,for the selected reducfive peak.The results indicated that PNP showed all irreversible adsorption-controlled electrode process on the CILE.  相似文献   

15.
We report experimental and simulation studies to investigate the effect of temperature on the adsorption isotherms for water in carbons. Adsorption isotherms are measured by a gravimetric technique in carbon-fiber monoliths at 378 and 423 K and studied by molecular simulation in ideal carbon pores in the temperature range 298-600 K. Experimental adsorption isotherms show a gradual water uptake, as the pressure increases, and narrow adsorption-desorption hysteresis loops. In contrast, simulated adsorption isotherms at room temperature are characterized by negligible uptake at low pressures, sudden and complete pore filling once a threshold pressure is reached, and wide adsorption-desorption hysteresis loops. As the temperature increases, the relative pressure at which pore filling occurs increases and the size of the hysteresis loop decreases. Experimental adsorption-desorption hysteresis loops are narrower than those from simulation. Discrepancies between simulation and experimental results are attributed to heterogeneities in chemical composition, pore connectivity, and nonuniform pore-size distribution, which are not accounted for in the simulation model. The hysteresis phase diagram for confined water is obtained by recording the pressure-density conditions that bound the simulated hysteresis loop at each temperature. We find that the hysteresis critical temperature, i.e., the lowest temperature at which no hysteresis is detected, can be hundreds of degrees lower than the vapor-liquid critical temperature for bulk model water. The properties of confined water are discussed with the aid of simulation snapshots and by analyzing the structure of the confined fluid.  相似文献   

16.
17.
Effects of hydrochloric acid and sodium hydroxide treatments of activated carbons (ACs) on chromium(VI) reduction were studied. The surface properties were determined by pH, acid-base values, FT-IR, and X-ray photoelectron spectrometer (XPS). And the porous structure of the activated carbons was characterized by adsorption of N(2)/77 K. The Cr(VI) adsorption experiments were carried out to analyze the influence of porous texture and surface properties changed by the chemical surface treatments of ACs on adsorption rate with carbon-solution contact time. From the experimental results, it was observed that the extent of adsorption and reduction processes depends on both microporous structure and functional groups. And the adsorption of Cr(VI) ion was more effective in the case of acidic treatment on activated carbons, resulting from the increases of acid value (or acidic functional group) of activated carbon surfaces. However, basic treatment on activated carbons was not significantly effective on the adsorption of Cr(VI) ion, probably due to the effects of the decrease of specific surface area and basic Cr(VI) in nature.  相似文献   

18.
Summary The adsorption isotherms of water vapor on modified activated carbons are measured in order to study the role of various surface groups in the primary adsorption of water molecules on these adsorbents. These adsorption isotherms are analysed by means of the Dubinin-Serpinsky and Jovanovic equations, which take into account the special features of water vapor adsorption on microporous activated carbons. Numerical analysis of the measured adsorption isotherms by means of the above mentioned equations showed their limited applicability for interpreting adsorption mechanism of water molecules on activated carbons.
Adsorption von Wasserdampf auf modifizierter Aktivkohle
Zusammenfassung Die Adsorptionsisothermen von Wasserdampf auf modifizierter Aktivkohle wurden gemessen, um die Rolle verschiedener Oberflächentypen auf die Primäradsorption von Wassermolekülen auf diesen Adsorbenzien zu untersuchen. Die Adsorptionsisothermen wurden mittels der Dubinin-Serpinsky- und Jovanovic-Gleichungen analysiert, welche die speziellen Eigenheiten von Wasser auf mikroporöser Aktivkohle berücksichtigen. Die numerische Analyse der gemessenen Adsorptionsisothermen mittles der genannten Gleichungen zeigte ihre limitierte Anwendbarkeit zur Interpretation von Adsorptionsmechanismen von Wassermolekülen auf modifizierter Aktivkohle.
  相似文献   

19.
An overview is given on the use of scanning tunneling microscopy (STM) for investigation of the adsorption of hydrogen on Si(111)7 x 7 both at room temperature and at elevated temperature to finally obtain a hydrogen-saturated surface of Si(111). The initial stages are characterized by high reactivity of Si adatoms of the 7 x 7 structure. After adsorption of hydrogen on the more reactive sites in the beginning of the adsorption experiments a regular pattern, which is different for room and elevated temperature, is observed for the less reactive sites. In agreement with previous work, local 1 x 1 periodicity of the rest atom layer and the presence of di- and trihydride clusters is observed for hydrogen-saturated surface. STM has also been used to characterize surfaces from which the hydrogen atoms have been removed by thermal desorption. Finally, tip-induced desorption by large positive sample-bias voltages and by increasing the tunneling current will be described.  相似文献   

20.
In this work, activated carbons (ACs) were modified by ozone treatment to enhance the efficiency of removal of ammonia gas over the ACs. Surface properties of the ACs were confirmed by X-ray photoelectron spectroscopy (XPS) analysis and N2 adsorption isotherms at 77 K were investigated by BET and D-A methods to characterize the specific surface area, total pore volume, and micropore volume. The ammonia removal efficiency was confirmed by the gas-detecting tube technique. The results showed that the specific surface area and micropore volume of ACs were slightly destroyed as the ozone treatment time increased. However, the ozone treatment led to an increase in ammonia removal efficiency of ACs, mainly due to an increase of acid functional groups, such as carbonyl and ether groups, on carbon surfaces. It was revealed that the improvement of ammonia removal efficiency of ACs was greatly affected by the interfacial acid-base interactions between modified ACs and basic ammonia adsorbate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号