首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氢化物发生-原子荧光光谱法测定海产品中总砷   总被引:1,自引:0,他引:1  
采用氢化物发生-原子荧光光谱法测定海产品中总砷的含量。样品经硝酸-高氯酸(4+1)混合酸消解,样品溶液中加入硫脲和抗坏血酸混合溶液作为预还原剂。于盐酸(5+95)溶液中加入10g.L-1硼氢化钾-5g.L-1氢氧化钾溶液使与溶液中砷离子反应生成氢化物。分析时采用载气流量为400mL.min-1,屏蔽气流量为800mL.min-1。砷的质量浓度在20μg.L-1以内与荧光强度呈线性关系,方法的检出限(3s/k)为0.015μg.L-1。应用此法对3种海产品进行分析,测定值的相对标准偏差(n=6)在3.4%~4.2%之间,回收率在98.5%~101.0%之间。  相似文献   

2.
提出了顺序注射-氢化物发生-原子荧光光谱法测定食品接触材料中铅迁移量的方法。将食品接触材料样品用40g.L-1乙酸溶液浸泡,所得浸泡液稀释十倍以消除基体干扰。将此溶液以1.2%(体积分数)盐酸溶液作载流引入顺序注射分析系统,同时引入7g.L-1硼氢化钠溶液(溶于7g.L-1氢氧化钠溶液中)作还原剂。铅的质量浓度在20.0μg.L-1以内与其荧光强度呈线性关系。方法的检出限(3s)为0.031μg.L-1。以空白食品接触材料为基体,加入铅标准溶液做回收试验,测得回收率在96.6%~101%之间,测定值的相对标准偏差(n=8)在2.2%~4.4%之间。  相似文献   

3.
样品经高氯酸-硝酸(1+4)混合溶液消化,以盐酸作为预还原剂,用氢化物发生-电感耦合等离子体原子发射光谱法测定全血中硒。在6mol.L-1盐酸溶液中加入溶于20g.L-1氢氧化钠溶液的5g.L-1硼氢化钠溶液使与溶液中硒离子反应生成氢化物。方法的检出限(3s/k)为1.8μg.L-1。应用此法测定2份血液样品中硒含量,方法的回收率在94.9%~107%之间,测定值的相对标准偏差(n=10)小于3%。  相似文献   

4.
合成了离子液体1-丁基-3-甲基咪唑六氟磷酸盐([Bmim]PF6),并将其用于水样中锌的萃取。在500 mL水样中依次加入10 g.L-1EDTA溶液3 mL和离子液体5 mL,在pH 7左右的条件下振摇5 min,分出离子液体相,用1.0 mol.L-1盐酸溶液10 mL返萃取,于水相中火焰原子吸收光谱法测定其锌量。锌的质量浓度在0.005~0.02 mg.L-1范围内与吸光度呈线性关系,方法的检出限(3σ)为0.75μg.L-1。应用此法测定地表水中锌,回收率在85%~110%之间。  相似文献   

5.
将热解吸收技术应用于冷原子荧光光谱法测定水泥样品中痕量汞含量。采用自制的石英管加热550℃处理样品,用0.01mol·L-1高锰酸钾溶液作为吸收液吸收释放出的汞蒸气,用盐酸羟胺还原过量的高锰酸钾后直接进样测定。试验中优化了仪器的工作参数和试验条件。分析中采用载气及屏蔽气的流量依次为400mL.min-1及1 000mL.min-1。荧光强度与汞的质量浓度在2μg·L-1以内呈线性关系,方法的检出限(3σ)为0.020μg·L-1。应用此法分析土壤标准样品(GBW 07405),测定值(0.30μg.g-1)与证书值(0.29±0.03μg.g-1)相符;方法用于测定水泥中汞含量,加标回收率在97.0%~107.0%之间,相对标准偏差(n=5)在0.7%~4.1%之间。  相似文献   

6.
应用氢化物发生-原子荧光光谱法测定了土壤及生物样品中铅和汞。样品用硝酸4mL及过氧化氢1mL按微波消解仪的工作参数进行消解,消解后溶液定容至25mL供测定。用30g·L-1柠檬酸溶液和硝酸(1+99)溶液的混合液作载流,根据铅(Ⅱ)离子的反应和试液对酸度的要求,选用含15g·L-1硼氢化钾,10g·L-1铁氰化钾和20g·L-1氢氧化钾的混合溶液作为还原剂。方法的检出限(3s/k)为0.512μg·L-1(铅)和0.067μg·L-1(汞)。应用此方法分析了3种实样并进行加标回收试验,测得回收率分别在91.0%~97.0%(铅)和88.0%~95.5%(汞)之间。  相似文献   

7.
0.100 0g焦炭灰样品经氢氟酸-硝酸(1+3)溶液8mL消解,用火焰原子吸收光谱法测定其中钾和钠的含量。钾和钠的质量浓度分别在4mg.L-1及2mg.L-1以内与其吸光度呈线性关系,检出限(3σ)分别为12μg.L-1及6μg.L-1。方法用于分析焦炭灰标准物质,测定值与认定值相符,钾和钠的相对标准偏差(n=11)依次在2.7%~3.8%和1.3%~3.1%之间。  相似文献   

8.
提出了氢化物发生-原子荧光光谱法测定载金炭中砷的含量。采用硝酸和高氯酸分解载金炭样品,在盐酸(10+90)溶液中加入溶于5 g.L-1氢氧化钾溶液中的20 g.L-1硼氢化钾溶液使与溶液中砷(Ⅲ)离子反应生成氢化物。分析中采用载气及屏蔽气的流量依次为300 mL.min-1及900 mL.min-1。试样溶液中加入硫脲-抗坏血酸混合溶液作为还原剂。于仪器中引入取样量为1.0 mL的试样溶液,按选定的工作条件操作。砷(Ⅲ)的质量浓度在120μg.L-1以内与其对应的荧光强度呈线性关系,方法的检出限(3s)为0.05μg.L-1。对10及80μg.L-1砷标准溶液连续进样11次,测定值的相对标准偏差分别为1.2%和1.0%。应用此法对载金炭样品进行分析,测得砷的回收率在92.8%~101.9%之间。  相似文献   

9.
将离子液体1-丁基-3-甲基咪唑六氟磷酸盐和双硫腙螯合剂用于复杂体系样品中锌的萃取。用原子吸收光谱法测定复杂体系样品中的锌含量。选择测定波长为516nm。锌的质量浓度在0.1~2.0mg·L-1范围内与其吸光度呈线性关系,检出限(3s/k)为0.69μg·L-1。方法应用于硫酸锌口服液样品中锌的测定,测定结果与药典法测定值相符。用标准加入法对方法的回收率进行试验,测得回收率在98.5%~101%之间,测定值的相对标准偏差(n=5)在1.9%~2.8%之间。  相似文献   

10.
粮食样品用甲醇-水(1+1)溶液超声提取,所得提取液通过Strata-X-C固相萃取小柱净化,用甲醇-0.2mol.L-1乙酸铵溶液(1+1)的混合液洗脱,将洗脱液旋转蒸发至近干,用乙腈-水(2+3)溶液溶解并定容至1 mL供测定。采用Aglient ZORBAX RX-SIL色谱柱(3.0 mm×100mm,1.8μm)分离,以乙腈和0.01mol.L-1乙酸铵溶液(含0.1%甲酸)按体积比20比80混合作为流动相,在0.3mL.min-1流量条件下进行洗脱。质谱测定中采用正离子电离方式,多反应监测扫描模式。矮壮素和缩节胺的质量浓度在0.2~10μg.L-1范围内与峰面积呈线性关系,检出限(3S/N)分别为0.02,0.05μg.kg-1。用标准加入法做回收试验,测得回收率在80.1%~104.7%之间,相对标准偏差(n=5)为2.5%~9.3%。  相似文献   

11.
黄瓜样品经乙腈超声波提取后,用活性炭固相萃取小柱净化,用乙腈洗脱,将洗脱液旋转蒸发至近干,用乙腈-水(1+1)溶液1.0 mL溶解测定。采用Hypersil GOLD C18色谱柱(2.0mm×150mm,3μm)分离,用不同比例配成的10mmol.L-1乙酸铵溶液(含甲酸φ0.1%)和乙腈为流动相梯度洗脱。质谱测定中采用正离子电离方式,选择离子监测模式。霜霉威的质量浓度在1.02~1 020μg.L-1范围内与峰面积呈线性关系,测定下限(10S/N)为0.2μg.kg-1。用标准加入法做回收试验,测得回收率在88%~96%之间,测定值的相对标准偏差(n=6)在4.7%~6.4%之间。  相似文献   

12.
取经烘干且粉碎的茶叶样品0.5g,用硝酸-高氯酸(4+1)混合酸10mL置于电热板上加热消解至溶液呈透明,继续蒸发至剩余约2mL溶液,加入6mol.L-1盐酸溶液5mL,加热使硒(Ⅵ)还原至硒(Ⅳ),重复3次,每次加水2mL,蒸发以驱除溶液中酸,最后用盐酸(4+96)溶液定容为25mL。将此溶液以盐酸(4+96)溶液作载流引入流动注射分析系统,同时引入10g.L-1硼氢化钾溶液(溶于5g.L-1氢氧化钾溶液中)作还原剂。硒的质量浓度在80μg.L-1以内与其荧光强度值呈线性关系。方法的检出限(3s/k)为0.034μg.L-1。应用此方法分析了3种茶叶样品,并以此为基体,加入硒标准溶液做回收试验,测得回收率在97.8%~103.0%之间,测定值的相对标准偏差(n=6)均小于1.5%。  相似文献   

13.
采用离子色谱法同时测定瓶(桶)装纯净水中溴酸盐和亚硝酸盐的含量。水样经AG19-4mm保护柱及DIONEX AS19色谱柱分离,以不同浓度的氢氧化钾溶液为淋洗液,溴酸盐和亚硝酸盐得到很好的分离。BrO3-和NO2-分别在5.00~100.00μg.L-1和1.00~50.00μg.L-1范围内呈线性,检出限(3s/k)分别为0.08,0.14μg.L-1。方法用于瓶(桶)装水中溴酸盐和亚硝酸盐的测定,加标回收率在92.7%~98.4%之间,相对标准偏差(n=5)均小于5.0%。  相似文献   

14.
高效液相色谱法测定透明质酸中乙二胺四乙酸   总被引:1,自引:0,他引:1  
提出了高效液相色谱法测定透明质酸中乙二胺四乙酸(EDTA)含量的方法。用ZOR-BAX Eclipse XDB-C18(4.6mm×150mm,5μm)色谱柱分离,以乙腈-pH 6.5的100g.L-1四丁基氢氧化铵-水(20+20+60)混合溶液为流动相,用紫外检测器在波长260nm处测定。EDTA的质量浓度在0.037 2~1.86mg.L-1范围内呈线性,检出限(3S/N)为4.745μg.L-1。方法用于分析透明质酸样品,回收率在87.2%~93.6%之间,测定值的相对标准偏差(n=5)小于5%。  相似文献   

15.
提出了高效液相色谱-电感耦合等离子体质谱法测定饮用水中碘酸根和碘离子的方法。饮用水样品通过Dionex IonPac AS14阴离子交换柱及AG14保护柱分离碘酸根和碘离子,用50mmol.L-1碳酸铵溶液(用氨水调至pH 9.9)作流动相进行淋洗。于洗脱液中用电感耦合等离子体质谱法分别测定碘酸根和碘离子的含量,两者的线性范围均为0.20~300μg.L-1,检出限(3S/N)依次为0.09μg.L-1和0.13μg.L-1。以饮用水为基体加入两个不同浓度水平的标准溶液按方法分析后,求得方法的回收率及精密度为①碘酸根回收率在100.5%~113.0%,相对标准偏差(n=8)在1.2%~2.8%之间;②碘离子回收率在101.9%~110.7%,相对标准偏差(n=8)在1.3%~2.0%之间。  相似文献   

16.
矿石样品铂、钯、铑和铱经铅试金富集,所得金属合粒用硝酸-盐酸溶解,用石墨炉原子吸收光谱法测定矿石样品中铂、钯、铑和铱的含量。在优化的石墨炉工作条件下测得:铂的质量浓度在20~150μg.L-1、钯在15~120μg.L-1、铑和铱在6~100μg.L-1范围内与其吸光度呈线性关系,检出限(3s/k)依次为4.6,4.0,1.5,1.5μg.L-1。方法用于分析了2种矿石国家标准物质(GBW 07341、GBW 07342),测定结果与认定值相符。方法的回收率在87.6%~105.5%之间。测定值的日内和日间相对标准偏差(n=7)分别在2.8%~3.6%和3.5%~4.7%之间。  相似文献   

17.
以铋膜电极为工作电极,采用微分脉冲阳极溶出伏安法直接测定食品样品中痕量铅、镉和锌。在富集电位-1.4V,富集时间180s,铋膜质量浓度150μg·L-1的条件下,铋膜电极对铅、镉和锌的氧化溶出具有良好的电化学响应。铅(Ⅱ)、镉(Ⅱ)和锌(Ⅱ)的质量浓度在5.0~40μg·L-1的范围内与其阳极溶出峰电流呈线性关系,铅(Ⅱ)、镉(Ⅱ)和锌(Ⅱ)的检出限(3S/N)分别为0.80,0.65,0.58μg·L-1。对25μg·L-1铅(Ⅱ)、镉(Ⅱ)和锌(Ⅱ)溶液用铋膜电极连续测定15次,相对标准偏差分别为6.2%,5.1%,7.1%。方法应用于食品中痕量重金属的测定,测定结果与石墨炉原子吸收光谱法的测定值相符。  相似文献   

18.
样品经甲醇索式提取180 min及复合式弱阴离子交换固相萃取柱富集,用氨水-甲醇(1+99)溶液从柱上洗脱PFOS和PFOA使净化。洗脱液在45℃氮气吹干,残渣用流动相乙腈-5 mmol.L-1乙酸胺(42+58)混合溶液溶解定容至5 mL,取10μL注入超高效液相色谱仪。以不同体积比的乙腈与5 mmol.L-1乙酸铵的混合溶液为流动相作梯度淋洗,经C18色谱柱(100 mm×2.1 mm,5μm)分离。采用电喷雾负离子源及多反应监测模式测定。PFOS和PFOA的质量浓度均在40.0μg.L-1以内呈线性关系,检出限(3S/N)均为1μg.L-1。在3个标准加入水平下进行了回收率和精密度试验,PFOS和PFOA的加标回收率分别在90.0%~99.4%和91.6%~104.0%之间,相对标准偏差(n=6)均不大于13%。  相似文献   

19.
中成药在6 tooL·L-1的盐酸溶液中,经加热后,无机砷以氯化物的形式被提取,用氢化物发生-原子荧光光谱法测定痕量无机砷.砷浓度在50μg·L-1以内与其峰面积之间保持线性关系(γ=0.999 6),方法的检出限为0.34μg·L-1,分析了中成药样品,结果的RSD值小于4%,回收率试验结果在92.6%~104.0%之间.  相似文献   

20.
氢化物发生-原子荧光光谱法测定北虫草中总硒和无机硒   总被引:1,自引:0,他引:1  
北虫草试样经硝酸-高氯酸(5+1)混合酸消解,用原子荧光光谱法测定总硒的含量;北虫草试样用盐酸浸提,用原子荧光光谱法测定无机硒的含量。使用溶于5g.L-1氢氧化钾溶液中的20g.L-1硼氢化钾溶液使与溶液中硒离子反应生成氢化物。分析中采用载气及屏蔽气的流量依次为500mL.min-1及1 000mL.min-1。荧光强度与硒的质量浓度在100μg·L-1以内呈线性关系,方法的检出限(3s/k)为0.2μg·L-1。应用此法测定北虫草中硒的含量,总砷测定值的相对标准偏差(n=5)在3.4%~3.9%之间,无机硒的平均回收率为103%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号