首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic activity of Rh (1 wt.%) catalysts supported on AlPO4 and sepiolite has been studied in the liquid-phase hydrogenation of linear 1-alkenes. The reaction orders with respect to 1-alkene concentration are negative but are first order with respect to hydrogen, indicating that 1-alkene adsorbs very strongly on Rh sites and alkene and H2, compete for adsorption sites on the surface. The initial hydrogenation rates increase in the order 1-hexene < 1-heptene < 1-octene, and furthermore, on going from 1-hexene to 1-octene the steric effects (through ΔS) are activating, while electronic effects (from ΔH) deactivate the reaction process. A cis-concerted mechanism taking place in a single step on a Rh site with three coordinative unsaturations which can simultaneously adsorb hydrogen and a π-bonded alkene is suggested.  相似文献   

2.
The effect of variation the cooling rate in a wide range between 10?2 and 103 K s?1 on solidification the relaxed melt of random isotactic copolymers of propylene with low amount of 1-hexene or 1-octene has been studied. Emphasis has been placed on the structure formation at rapid cooling and an evaluation of the conditions required to permit crystallization, mesophase formation, or suppression of any ordering. The presence of low amount of either 1-hexene or 1-octene co-units in the propylene chain decreases drastically the critical cooling rate required for suppression of crystallization from about 150–200 K s?1 in the homopolymer to about only 10 K s?1 in the copolymers; increasing the cooling rate beyond these limits allowed mesophase formation or even generation of fully amorphous samples. The study of the kinetics of formation of specific structures is completed by a complementary analysis of the X-ray structure, morphology and superstructure of the ordered phase. The hindrance of non-isothermal crystallization and mesophase formation of random copolymers of propylene with 1-hexene or 1-octene is compared with that in propylene–1-butene copolymers; addition of only 2–3 mol% 1-hexene or 1-octene into the propylene chain leads to even larger hindrance of the ordering process than the addition of more than 10 mol% 1-butene.  相似文献   

3.
The gas-phase reaction of ozone with eight 1,2-disubstituted alkenes has been investigated at ambient temperature (T = 286–296 K) and p = 1 atm. of air. The reaction rate constants, in units of 10−18 cm3 molecule−1s−1, are 144 ± 17 for cis-3-hexene, 157 ± 25 for trans-3-hexene, 89.8 ± 9.7 for cis-4-octene, 131 ± 15 for trans-4-octene, 114 ± 13 for cis-5-decene, ≥ 130 for trans-5-decene, 38.3 ± 5.0 for trans-2.5-dimethyl-3-hexene, and 40.3 ± 6.7 for trans-2.2-dimethyl-3-hexene. Substituent effects on alkene reactivity are examined. Cis-1,2-disubstituted alkenes are less reactive than the corresponding trans isomers. The 1,2-disubstituted alkenes that bear bulky substituents (substitution at the 3-carbon) are ca. 3 times less reactive than the corresponding n-alkyl substituted compounds. The atmospheric persistence of 1,2-disubstituted alkenes is briefly discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
The effects of the type and concentration of comonomers 1-hexene and 1-octene in the copolymerization of ethylene were investigated using pre polymerized Ziegler-Natta (catalyst a) and without pre polymerized (catalyst b) catalysts in the presence of hydrogen as a chain transfer agent. The properties of produced polymers were characterized by a set of techniques: (SEM), (EDX), (DSC), (GPC). TIBA and DEAC were used as co catalysts. The results of microscopic and SEM images showed the morphology and structure of catalysts (a) and (b) and the obtained spherical polymers. In the presence of 1-hexene, activity of catalyst (a) was at its maximum. The comonomer 1-octene at 32 mmol presented its activity (1.7 × 103 g polymer/(g cat.h)) and after that, the activities decreased. Copolymerization of ethylene and 1-hexene by catalyst (b) showed higher activity (1.6 × 103 g polymer/ polymer/(g cat.h)) at 40 mmol concentration of 1-hexene in comparison to catalyst (a).  相似文献   

5.
《Fluid Phase Equilibria》2002,193(1-2):289-301
The experimental isothermal Px data at T=313.15 K for the two ternary systems (isopropyl ether+n-heptane+1-hexene) and (1-hexene+n-heptane+benzene) are reported. Data reduction by Barker’s method provides correlation for GE. The Wohl expansion, also Wilson, NRTL and UNIQUAC models have been applied successfully to the ternary systems. The experimental data, in this work are not available in the literature.  相似文献   

6.
Linear α-olefins, especially 1-hexene and 1-octene, are key components for the production of LLDPE and the demand for 1-hexene and 1-octene increased enormously in recent years. To meet this demand several processes were developed in the last decade to produce 1-hexene and 1-octene selectively. Here we review the new processes for 1-octene production based on homogeneous catalysts.Sasol's coal-based high temperature Fischer–Tropsch technology produces an Anderson–Schulz–Flory distribution of hydrocarbons with high α-olefin content and the desired alkenes, including 1-heptene and 1-octene, are separated by distillation. In this case, as in the SHOP process, 1-octene constitutes only a minor part of the total yield.Nowadays other technologies are being applied or considered for on-purpose 1-octene production: hydroformylation of 1-heptene, the telomerization of 1,3-butadiene, and ethene tetramerization.1-Heptene can be converted in three steps to 1-octene: (1) hydroformylation of 1-heptene to octanal, (2) hydrogenation of octanal to 1-octanol, and (3) dehydration of 1-octanol to 1-octene. This process was commercialized by Sasol.Dow commercialized a process based on butadiene. Telomerization of butadiene with methanol in the presence of a palladium catalyst yields 1-methoxy-2,7-octadiene, which is fully hydrogenated to 1-methoxyoctane in the next step. Subsequent cracking of 1-methoxyoctane gives 1-octene and methanol for recycle. Recently highly active and stable phosphine based systems were reported that show particularly good performance for the industrially attractive feedstock, the C4 cut of the paraffin cracker.1-Hexene can be obtained by ethene trimerization by a family of catalysts based mainly on Cr. High selectivity to 1-hexene can be achieved thanks the propensity of the chromium based catalyst to form 7-membered ring metallacycles. Sasol has found catalyst systems that allow the formation of a 9-membered metallacycle in large proportion relative to 7-membered ring formation, yielding 1-octene.  相似文献   

7.
The catalytic activity of the titanium(IV) dichloride complex with the (4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-bis(perfluorophenyldimethanol) ligand in the presence of a cocatalyst (polymethylaluminoxane, triethylaluminum, or triisobutylaluminum) in the polymerization of higher α-olefins (1-hexene, 1-octene, 1-decene) is investigated. It is shown that, depending on the types of cocatalyst and monomer and the molar ratio of components of the catalytic system, high- or ultrahigh-molecular-mass poly(α-olefins) with M w = (4 × 105)?(3 × 106) can be prepared. The chain microstructure of polyhexene is examined.  相似文献   

8.
The molecular structures of cis-3-hexene and of trans-3-hexene in the gas phase have been determined by electron diffraction combined with molecular mechanical calculations. For cis-3-hexene the data indicate the presence of the (+ac, +ac) and the (?ac, +ac) forms. In trans-3 -hexene three rotamers were observed, with an energy sequence E(+ac, +ac) ≈ E(?ac, +ac) < E(ac, sp). The refined rα0-structural parameters are: cis-3-hexene: C-H = 1.073 Å, CC = 1.330 Å, C(sp2)-C(sp3) = 1.505 Å, ∠CCH(in CH2) = 111.1°, ∠CCC = 111.4°, ∠(CC-C) = 129.1° trans-3-hexene: C-H = 1.078 Å, CC = 1.342 Å, C(sp2)-C(sp3) = 1.506 Å, ∠CCH(in CH2) = 109.3°, ∠CCC = 112.8, ∠CC—C = 124.1°The agreement between calculated and experimental geometries and vibrational amplitudes is good.  相似文献   

9.
Carboalumination of 1-alkenes (1-hexene, 1-octene, 1-decene) with Et3Al in the presence of catalytic amounts of TaCl5 results in a mixture of 2-(R-substituted)- and 3-(R-substituted)-n-butylaluminums (1:1 ratio) in total yields of 75–85%. The TaCl5-catalyzed reaction of bicyclo[2.2.1]hept-2-ene, endo-tricyclo[5.2.1.02,6]deca-3,8-diene, and (exo/endo)-5-methylbicyclo[2.1.1]hept-2-ene with Et3Al leads to the formation of diethyl[2-exo-(2′-norbornylethyl)]aluminums in high yields. DFT calculations confirm the thermodynamic preference of the final exo product. The multistep reaction mechanisms for the formation of the resultant organoaluminums through tantalacyclopentanes as key intermediates are also discussed.  相似文献   

10.
The copolymerizations of ethylene with 1-hexene or 1-octene by using TiCl4 /MgCl2 /THF catalysts modified with different metal halide additives(ZnCl2, SiCl4, and the combined ZnCl2-SiCl4) were investigated based on catalytic activity and copolymer properties. It was found that the catalyst modified with mixed ZnCl2-SiCl4 revealed the highest activities for both ethylene/1-hexene and ethylene/1-octene copolymerization. The increase in activities was due to the formation of acidic sites by modifying the catalysts with Lewis acids. Based on the FTIR measurements, the characteristic C―O―C peaks of the catalysts modified with metal halide additives were slightly shifted to lower wavenumber when compared to the unmodified catalyst. This showed that the modified catalysts could generate more acid sites in the TiCl4 /MgCl2 /THF catalytic system leading to an increase in activities as well as comonomer insertion(as proven by13C-NMR). However, Lewis acidmodifications did not affect the microstructure of the copolymers obtained. By comparison on the properties of copolymers prepared with the unmodified catalyst, it was found that polymers with ZnCl2 and/or SiCl4 modification exhibited a slight decrease in melting temperature, crystallinity and density. It is suggested that these results were obtained based on the different amount of α-olefins insertion, regardless of the types of Lewis acids and comonomer.  相似文献   

11.
The 2,6-dimethylphenyl ester of 10-undecenoic acid was copolymerized with 1-dodecene, 1-octene, 1-hexene, propylene, and ethylene using coordination initiation systems based on “aluminum-activated” titanium trichloride and dialkylaluminum chlorides. The copolymerizations with higher α-olefins proceeded smoothly and gave copolymers incorporating from 60 to 90% of the 10-undecenoate feed. Copolymerization with propylene gave incorporation of 5 mol % of 2,6-dimethylphenyl 10-undecenoate; with ethylene only 3 mol % of the ω-alkenoate was readily incorporated. All copolymers were characterized by elemental analysis, dilute solution viscosity, and by their IR 1H- and 13C-NMR spectra.  相似文献   

12.
Linear alpha-olefins, such as 1-hexene and 1-octene, are important comonomers in the production of linear low-density polyethylene (LLDPE). The conventional method of producing 1-hexene and 1-octene is by oligomerization of ethylene, which yields a wide spectrum of linear alpha-olefins (LAOs). While there exists several processes for producing 1-hexene via ethylene trimerization, a similar route for the selective production of 1-octene has so far been elusive. We now, for the first time, report an unprecedented ethylene tetramerization reaction that produces 1-octene in selectivities exceeding 70%, using an aluminoxane-activated chromium/((R2)2P)2NR1 catalyst system.  相似文献   

13.
Abstract

The microstructure of ethylene copolymers based on 1-hexene, 1-octene, and norbornene as comonomers was studied and related to its melting, crystallization, and glass transition behavior as well as to tensile strength.  相似文献   

14.
《Fluid Phase Equilibria》2004,220(1):105-112
Experimental isothermal Px data at T=313.15 K for seven binary systems (1,1-dimethylethyl methyl ether (MTBE)+2,2,4-trimethylpentane); (1,1-dimethylethyl methyl ether (MTBE)+toluene); (toluene+2,2,4-trimethylpentane); (toluene+1-hexene); (toluene+cyclohexane); (2,2,4-trimethylpentane+1-hexene) and (2,2,4-trimethylpentane+cyclohexane) are reported. Data reduction by Barker’s method provides correlations for GE using the Margules equation, Wilson, NRTL and UNIQUAC models, which have been applied successfully. We have compared the behaviour in the vapour–liquid equilibrium of the aromatic compounds benzene and toluene and the paraffins heptane and 2,2,4-trimethylpentane. And finally we have modelled a gasoline of five components using the Wilson model, and we have compared the influence of three different ethers used as oxygenated additives in gasolines.  相似文献   

15.
Activity coefficients for hydrocarbon solutes at infinite dilution in 1-methyl-3-octyl-imidazolium chloride have been measured using the medium pressure gas–liquid chromatography method. The hydrocarbon solutes used were n-pentane, n-hexane, n-heptane, n-octane, 1-hexene, 1-heptene, 1-octene, 1-hexyne, 1-heptyne, 1-octyne, cyclopentane, cyclohexane, cycloheptane, benzene, and toluene. Activity coefficients at infinite dilution were determined at the following three temperatures (298.15, 308.15, and 318.15) K. Selectivities for benzene and the hydrocarbons are presented and the results indicate that 1-methyl-3-octyl-imidazolium chloride is a reasonable solvent for the separation of an alkane or an alkene from benzene.  相似文献   

16.
1-Hexene and 1-octene oligomerization reactions were performed with Cp2ZrCl2 and Cp2HfCl2 in the presence of methylaluminoxane as cocatalyst at 25 and 80 °C to produce polyα-olefin-type oils. By examining the molecular weight results, obtained from gel permeation chromatography, the oligomeric structure of the products was confirmed. Hafnocene produced oligomers with higher molecular weights in comparison with zirconocene under the same reaction condition. In addition, with increasing temperature, the molecular weight decreased. Differential scanning calorimetry analysis of the poly1-hexene- and poly1-octene-type oligomers confirmed their amorphous nature. 1H-nuclear magnetic resonance (NMR) analysis was performed to study the mechanism of termination reactions. The results obtained from the 1H-NMR analysis confirmed the vinylidine form (vd) as the only unsaturated structure in all synthesized oligomers. Therefore, in the 1-hexene and 1-octene oligomerization reactions with these two catalytic systems, the chain termination is totally accomplished by β-hydride elimination at both reaction temperatures.  相似文献   

17.
采用MgCl2负载TiCl4及1,3-二氯-2-丙醇给电子体(XROH),与三乙基铝助催化剂组成的催化剂体系,合成了1-己烯共聚率高且宽分子量分布的乙烯/1-己烯共聚物。 讨论了催化体系的组成、配比和聚合条件对乙烯/1-己烯共聚合行为,共聚物结构、分子量及分子量分布的影响。 结果表明,n(Ti)∶n(Mg)=10∶1,n(XROH)∶n(MgCl2)=2.6∶1,n(Al)∶n(Ti)=100∶1,乙烯压力0.45 MPa,聚合温度80 ℃,聚合时间2 h,共聚单体(1-hexene)浓度0.25 mol/L时,催化效率达23.2 kg/g cat。 采用13C NMR、X-ray、SEM、WAXD、DSC、GPC等测试技术对催化剂、共聚物的结构进行了表征。 结果表明,在Zieglar-Natta(Z-N)催化体系中,给电子体多卤代醇与TiCl4结合,载体MgCl2的晶体结构发生了变化。 结晶度降低,有利于催化剂负载量的提高(ω(Ti)=4.8%)和催化效率增大。 催化体系产生了多种活性中心,使聚烯烃分子量分布变宽(15~20)。 多卤代醇还可增强1-己烯与乙烯的共聚能力,在共聚物中1-己烯的摩尔分数达5.1%。  相似文献   

18.
The present study reports values of reactivity ratios for ethylene/1-hexene, ethylene/1-octene and ethylene/1-decene copolymerizations promoted by C2H4[Ind]2ZrCl2/MAO. The comonomer reactivities are markedly influenced by the number of carbon atoms of the α-olefin. The ethylene/1-decene copolymerization depends on the concentration of α-olefin in the feed.  相似文献   

19.
The dependence of organic acid generation by alkene ozonolysis on relative humidity, thermalized Criegee intermediate scavengers, and alkene structure is investigated. Carboxylic acids generated from the ozonolysis of 1-hexene, 1-octene, 1-decene, trans-3-octene, and 1-methylcyclohexene were analyzed as trimethylsilyl (TMS) derivatives. Experiments were performed under dry (relative humidity (RH) < 1%) and humid (RH = 65%) conditions with cyclohexane or n-butyl ether as an OH scavenger. Pentanoic acid is produced from 1-hexene and trans-3-octene with yields 8.5 +/- 2.6 and 5.0 +/- 1.5% under dry conditions and 5.1 +/- 1.5 and 2.8 +/- 0.8% under humid conditions, respectively. Heptanoic acid yields from 1-octene are 8.3 +/- 2.5 and 4.4 +/- 1.3% under dry and humid conditions, respectively. Ozonolysis of 1-methylcyclohexene produced six C5-C7 multifunctional carboxylic acids, with a total yield of 7%. Several other acids and aldehydes were also monitored and quantified. An additional set of experiments with added stabilized Criegee intermediate (SCI) scavengers was performed for 1-octene ozonolysis under dry conditions. The results indicate that SCIs and their reaction with water are minor contributors to acid formation in the atmosphere and suggest that many of the acids are formed directly.  相似文献   

20.
��־ǿ 《高分子科学》2013,31(1):110-121
A supported TiCl4/MgCl2 catalyst without internal electron donor (O-cat) was prepared firstly. Then it was modified by 2,6-diisopropylphenol to make a novel modified catalyst (M-cat). These two catalysts were used to catalyze ethylene/1-hexene copolymerization and 1-hexene homopolymerization. The influence of cocatalyst and hydrogen on the catalytic behavior of these two catalysts was investigated. In ethylene/1-hexene copolymerization, the introduction of 2,6-iPr2C6H3O-groups did not deactivate the supported TiCl4/MgCl2 catalyst. Although the 1-hexene incorporation in ethylene/1-hexene copolymer prepared by M-cat was lower than that prepared by O-cat, the composition distribution of the former was narrower than that of the latter. Methylaluminoxane (MAO) was a more effective activator for M-cat than triisobutyl-aluminium (TIBA). MAO led to higher yield and more uniform chain structure. In 1-hexene homopolymerization, the presence of 2,6-iPr2C6H3O-groups lowered the propagation rate constants. Two types of active centers with a chemically bonded 2,6-iPr2C6H3O-group were proposed to explain the observed phenomena in M-cat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号