首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two methods for estimating the critical temperature (Tb) of thermal explosion for the highly nitrated nitrocellulose (HNNC) are derived from the Semenov's thermal explosion theory and two non-isothermal kinetic equations, d/dt=Af()e–E/RT and d/dt=Af()[1+E/(RT)(1–To/T)]e–E/RT, using reasonable hypotheses. We can easily obtain the values of the thermal decomposition activation energy (E), the onset temperature (Te) and the initial temperature (To) at which DSC curve deviates from the baseline of the non-isothermal DSC curve of HNNC, and then calculate the critical temperature (Tb) of thermal explosion by the two derived formulae. The results obtained with the two methods for HNNC are in agreement to each other.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
Numerical integration has been carried out for p(x) = ?xx?2e?xdx where x = E/RT with E = 20, 25, …, 100 kcal mole?1 and T = 300, 350, …, 1000 K. Using the values of -log p(x), numerical equations have been obtained that enable calculations of -log p(x) at other values of E and T.  相似文献   

3.
A method for estimating the critical temperatures (T b) of thermal explosion for energetic materials is derived from Semenov’s thermal explosion theory and the non-isothermal kinetic equation dα/dt=A 0 T B f(α)e−E/RT using reasonable hypotheses. The final formula of calculating the value of T b is $ \left( {\frac{B} {{T_b }} + \frac{E} {{RT_b^2 }}} \right) $ \left( {\frac{B} {{T_b }} + \frac{E} {{RT_b^2 }}} \right) (T bT e0=1. The data needed for the method, E and T e0, can be obtained from analyses of the non-isothermal DSC curves. When B=0.5 the critical temperature (T b) of thermal explosion of azido-acetic-acid-2-(2-azido-acetoxy)-ethylester (EGBAA) is determined as 475.65 K.  相似文献   

4.
Bye-beam excitation of a He/CO mixture the CO(3Π r ,a) state was sufficiently populated to allow the measurement of the absorption spectrum. The (0, 0), (1, 1), (2, 2) and (0, 1) bands of thec 3Π←a 3Π system of CO have been observed and the molecular constantsT e =92036.0 cm?1 (for the band head), ω e =2249.5 cm?1, ω e x e =29.5 cm?1 have been derived for CO(c). A new electronic state withT e =91854.3 cm?1, ω e =848.4 cm?1, ω e x e =9.8 cm?1,B e =1.351 cm?1, and α e =0.021 cm?1 was identified to be a3Σ state. It seems to be very likely that this state is the CO (3pσ,3Σ,j) state discussed in the literature. The results indicate a perturbation of the υ=1 levels of the new state by the CO (c,υ=0) levels. Another strong perturbation is found in the υ=4 levels. The three CO(3Σ,b,υ′=0,1,2)←CO (a,υ″=0) bands were also investigated yielding for CO(b):T e =83778 cm?1, ω e =2335 cm?1, ω e x e =59 cm?1 andB e =1.86 cm?1.  相似文献   

5.
The Accuracy of Senum and Yang's Approximations to the Arrhenius Integral   总被引:1,自引:0,他引:1  
The accuracy of the integral of the Arrhenius equation, as determined from the 1st to the 4th degree rational approximation proposed by Senum and Yang, has been calculated. The precision of the 5th to 8th rational approximations, here proposed for the first time, has also been analyzed. It has been concluded that the accuracy increases by increasing the order of the rational approximation. It has been shown that these approximations to the Arrhenius equation integral would allow an accuracy better than 10−8 % in the E/RT range generally observed for solid state reactions. Moreover, it has been demonstrated that errors closed to 10−2 % can be obtained even for E/RT=1, provided that high enough degrees of rational approximation have been used. Thus, it would be reasonable to assume that high degree rational approximations for the Arrhenius integral could be used for the kinetic analysis of processes, like adsorption or desorption of gases on solid surfaces, which can take place at low temperatures with very low values of E/RT. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The degrees of weathering of polyacetal specimens exposed for a year at fourteen sites throughout the world have been assessed from weight loss measurements. From a consideration of the results and meteorological data it has been shown that the extent of polyacetal degradation depends on uv dose and temperature. Moisture also affects the degree of breakdown; its effect is to inhibit the photo-oxidative process.An expression, W = 1·58 × 104D e?10 000/RT, is developed which enables polyacetal weight loss at a site to be estimated from a knowledge of the annual uv dose (D) as measured by the PPO film technique and the mean temperature (T) in degrees absolute.From information presented on these two climatic factors, a relationship between site latitude and the degree of polyacetal breakdown is proposed.  相似文献   

7.
This paper proposes a modified pseudoequilibrium calculation, which gives almost the same results as those of kinetic calculations to determine the composition of hydrogen and nitrogen plasmas at atmospheric pressure. The computing time is two to three orders of magnitude faster than that of the kinetic calculations. First, according to experimental results, a relationship between the electron temperature Te and the heavy species one Th has been proposed. The ratio Te/Th varies as a function of the logarithm of the ratio ne/n e max , e max being the electron density in the plasma core for which equilibrium is achieved e max ~ 10 23 ). The kinetic calculations have been performed assuming the microreversibility where the backward kinetic rate coefficient kb is calculated by kd/kb=Kx, where kd is the direct kinetic coefficient and Kx the molar fraction equilibrium constant. When electrons are involved in both direct and backward reactions, kd and Kx are expressed as functions of Te . However, when the direct reaction involves electrons while the backward one is due to collisions between heavy species (or the reverse), a temperature T* between Te and Th is introduced. T* is determined as a function of the ratio of the electron flux to that of neutral species in such a way that T*=Te for ne > 1023 and T*=Th for low values of ne(ne < 1015 m–3). Compared to hydrogen, the nitrogen composition exhibits a very abrupt variation between 6000 and 6500 K, corresponding to a shift from the dissociation-dominated regime to that of ionization. It occurs because dissociation of nitrogen starts almost simultaneously with its ionization, which is not the case of H2, for which dissociation is terminated long before ionization starts. If the charge transfer reaction, whose activation energy is low for both gases, is neglected, in both cases the electron density increases drastically below 9000 K. These results are quite similar to those obtained when calculating the composition with the multitemperature mass action law. The kinetic calculations are dominated by the reactions with a low activation energy: dissociation, dissociative recombination and charge transfer. Thus, a modified pseudoequilibrium calculation has been introduced, the plasma composition being calculated with the equilibrium constants corresponding to low activation energies[X2 2X, e+X 2 + 2X, X 2 + +X X+ + X2 both for hydrogen (X=H) and nitrogen (X=N)] at the temperature T* between Te and Th. The results are in very good agreement with those of the kinetic calculations.  相似文献   

8.
Two-photon high resolution sequential spectroscopy has been used to excite iodine monochloride from X1Σ+ ground state to the intermediate A3Π1 state and thence to a final electronic state at 4.82 eV. Vibrational and rotational analyses of this state have been carried out for both isotopic species. For I35Cl, Te = 38916.0 cm?1 ωe = 168.99 cm?1, ωexe = 0.357 cm?1 and Be = 0.05685 cm?1. The state probably has Ω = 1 in case (c) coupling approximation. It is also shown how to two-photon technique enables rotational line structure of the A ← X transition to be selectively excited for either isotopic species at a resolution of 500000, from an absorption mixture containing natural iodine monochloride plus its iodine dissociation product at equilibrium vapour pressure.  相似文献   

9.
Chemiluminescence from the b 0+ → X1 0+ band system of AsI and of the b 0+ → X1 0+, X2 1 systems of SbI in the near-infrared spectral region has been observed in a discharge flow system. Analysis of the spectra led to the spectroscopic constants (in cm?1) of AsI: ωe(X1, X2) = 257 ± 2, ωexe(X1, X2) = 0.82 ± 0.2, Te(b 0+) = 11738 ± 5, ωe(b 0+) = 271 ± 2, ωexe(b 0+) = 0.66 ± 0.2, and of SbI: Te(X2 1) = 965 ± 10, ωe(X1, X2) = 206 ± 6, Te(b 0+) = 12328 ± 10, ωe(b 0+) = 211 ± 6. The intensity ratio of the two sub-systems b 0+ → X2 1 and b 0+→ X1 0+ was found to be ≈0.013 in the case of SbI and ? 0.01 for AsI.  相似文献   

10.
This paper discusses the factors which influence the choice and implementation of computer methods to evaluate the Arrhenius integral, IA = ∫Tα0 exp(?E/RT)dT. It also identifies the sources of computational error and inefficiency. It is shown that, amongst numerical integration techniques, the classical trapezoidal and Simpson rules have little to recommend them compared with the method of Gaussian quadrature. A technique for preserving the accuracy of the Gauss method at very high values of E/RTα is also described and evaluated. Rational (Padé) approximation is found to compare favourably with Gaussian quadrature in efficiency and accuracy, and is simpler to use. The discussion also reveals that six decimal-digit arithmetic is adequate for all practical purposes.  相似文献   

11.
The thermal decomposition of the mixed-ligand complex of iron(III) with 2-[(o-hydroxy benzylidene)amino] phenol and pyridine-[Fe2O(OC6H4CH=NC6H4O)2(C5H5N)4]·2H2O and its non-isothermal kinetics were studied by TG and DTG techniques. The non-isothermal kinetic data were analyzed and the kinetic parameters for the first and second steps of the thermal decomposition were evaluated by two different methods, the Achar and Coats-Redfern methods. Steps 1 and 2 are both second-order chemical reactions. Their kinetic equations can be expressed as: dα/dt=Ae?E/RT(1-α)2  相似文献   

12.
The kinetics of the reactions of hydroxy radicals with cyclopropane and cyclobutane has been investigated in the temperature range of 298–492 K with laser flash photolysis/resonance fluorescence technique. The temperature dependence of the rate constants is given by k1 = (1.17 ± 0.15) × 10?16 T3/2 exp[?(1037 ± 87) kcal mol?1/RT] cm3 molecule?1 s1 and k2 = (5.06 ± 0.57) × 10?16 T3/2 exp[?(228 ± 78) kcal mol?1/RT] cm3 molecule?1 s?1 for the reactions OH + cyclopropane → products (1) and OH + cyclobutane → products (2), respectively. Kinetic data available for OH + cycloalkane reactions were analyzed in terms of structure-reactivity correlations involving kinetic and energetic parameters.  相似文献   

13.
A complex [Zn(C8H7O3)2(H2O)2] (C8H8O3 is vanillin) has been synthesized and characterized by IR, elemental analysis, and X-ray diffraction single-crystal analysis. The crystals are monoclinic, space group C2/c, a = 22.236(8) Å, b = 10.594(2) Å, c = 7.8190(16) Å, α = 89.90(3)°, β = 106.87(4)°, γ = 89.99(3)°, V = 1762.6(8) Å3, Z = 4, F(000) = 832, S = 1.079, ρ c = 1.521g cm?3, R = 0.0221, R w = 0.0604, μ = 1.433 mm?1. The Zn2+ ion is six-coordinated with a distorted octahedron geometry. The complex forms a three-dimensional network through intermolecular hydrogen bonds. The thermal decomposition kinetics of the complex for the second stage was studied under non-isothermal conditions by the TG and DTG methods. The kinetic equation can be expressed as dα/dt = Ae?E/RT 2(1 ? α)[1 ? ln(1 ? α)]1/2. The kinetic parameters (E, A), activation entropy ΔS , and activation free-energy ΔG were also gained.  相似文献   

14.
The thermal unimolecular decomposition of three vinylethers has been studied in a VLPP apparatus. The high-pressure rate constant for the retro-ene reaction of ethylvinylether was fit by log k (sec?1) = (11.47 + 0.25) - (43.4 ± 1.0)/2.303 RT at <T> = 900 K and that of t - butylvinylether by log k (sec?1) = (12.00 ± 0.27) - (38.4 ± 1.0)/2.303 RT at <T> = 800 K. No evidence for the competition of the higher energy homolytic bond-fission process could be obtained from the experimental data. The rate constant compatible with the C? O bond scission reaction in the case of benzylvinylether was log k (sec?1) = (16.63 ± 0.30) - (53.74 ± 1.0)/2.303 RT at <T> = 750 K. Together with ΔHf,3000(benzyl·) = 47.0 kcal/mol, the activation energy for this reaction results in ΔHf,3000(CH2CHO) = +3.0 ± 2.0 kcal/mol and a corresponding resonance stabilization energy of 3.2 ± 2.0 kcal/mol for 2-ethanalyl radical.  相似文献   

15.
The diffusion coefficients D of UCl4 and UOCl2 in the eutectic LiCl? KCl melt at 370–610°C have been determined, using α-active 233U as a tracer, to be: UCl4/D = 1.13 · 10?3 e?6300/RT; UO2Cl2/D = 1.76 · 10?3 e?7500/RT cm2/sec.  相似文献   

16.
Aqueous bromine reacts with alkyl-sidechain amino acids through a series of steps resulting in the formation of the corresponding alkyl aldelydes and nitriles. The kinetics and the mechanism of the interaction of bromine with alanine are examined. The products and the rates of this reaction are dependent in a complex way on the initial reactant concentration and pH. Acetaldeyde production is favored at low bromine-to-alanine ratios, low bromine concentrations, and pH values above 6. The first-order rate constant for the formation of acetaldelyde from alanine under these conditions is k4 = 1.98 × 1015 e?22,500/RT min?1. At higher concentration the nitrile is formed through a bromoimine intermediate. Under most conditions the nitrile appears to form from a catalyzed decomposition of the bromoimine which is too fast to be followed by the methods used in this study. However, residual amounts of the bromoimine decay by a slower first-order mechanism. The rate constant for this slower reaction in the case of alanine at pH 6.8–6.9 and alanine concentrations of 1 × 10?4M is k6 = 1.75 × 105 e?10,400/RT min?1.  相似文献   

17.
Gas-phase reactions typical of the Earth’s atmosphere have been studied for a number of partially fluorinated alcohols (PFAs). The rate constants of the reactions of CF3CH2OH, CH2FCH2OH, and CHF2CH2OH with fluorine atoms have been determined by the relative measurement method. The rate constant for CF3CH2OH has been measured in the temperature range 258–358 K (k = (3.4 ± 2.0) × 1013exp(?E/RT) cm3 mol?1 s?1, where E = ?(1.5 ± 1.3) kJ/mol). The rate constants for CH2FCH2OH and CHF2CH2OH have been determined at room temperature to be (8.3 ± 2.9) × 1013 (T = 295 K) and (6.4 ± 0.6) × 1013 (T = 296 K) cm3 mol?1 s?1, respectively. The rate constants of the reactions between dioxygen and primary radicals resulting from PFA + F reactions have been determined by the relative measurement method. The reaction between O2 and the radicals of the general formula C2H2F3O (CF3CH2? and CF3?HOH) have been investigated in the temperature range 258–358 K to obtain k = (3.8 ± 2.0) × 108exp(?E/RT) cm3 mol?1 s?1, where E = ?(10.2 ± 1.5) kJ/mol. For the reaction between O2 and the radicals of the general formula C2H4FO (? HFCH2O, CH2F?HOH, and CH2FCH2?) at T = 258–358 K, k = (1.3 ± 0.6) × 1011exp(?E/RT) cm3 mol?1 s?1, where E = ?(5.3 ± 1.4) kJ/mol. The rate constant of the reaction between O2 and the radicals with the general formula C2H3F2O (?F2CH2O, CHF2?HOH, and CHF2CH2?) at T = 300 K is k = 1.32 × 1011 cm3 mol?1 s?1. For the reaction between NO and the primary radicals with the general formula C2H2F3O (CF3CH2? and CF3?HOH), which result from the reaction CF3CH2OH + F, the rate constant at 298 K is k = 9.7 × 109 cm3 mol?1 s?1. The experiments were carried out in a flow reactor, and the reaction mixture was analyzed mass-spectrometrically. A mechanism based on the results of our studies and on the literature data has been suggested for the atmospheric degradation of PFAs.  相似文献   

18.
Based on previously reported approximations of the temperature integral, a new approximation $$\int {\exp ( - E/RT)dT = \frac{{RT^2 }}{E}} \left[ {\frac{{1 - 2(RT/E)}}{{1 - 5(RT/E)^2 }}} \right]\exp ( - E/RT)$$ has been proposed for modeling nonisothermal reactions. It has been found that the equation of Coats and Redfern deviates by less than 1 % from the exact solution forE/RT ratio greater than 23 and by less than 10% forE/RT ratio greater than 6. The exact solution was obtained independently by solving the exponential temperature integral numerically by the Simpson's rule and the Trapezoidal rule. The Gorbachev equation deviates by less than 0.1% forE/RT ratio greater than 41 and by less than 1 % forE/RT ratio greater than 11. The Li equation deviates by less than 0.1 % forE/RT ratio greater than 21 and by less than 1% forE/RT ratio greater than 9. The proposed equation deviates by less than 0.1% forE/RT greater than 7.  相似文献   

19.
The kinetics of pyrolysis of dimethyl ether wexre studied in an adiabatic flow reactor at temperatures between 790 and 950°C. The unimolecular rate constant for the initiating step CH3OCH3 = CH3O + CH3 was found to be k1 = 2.16 × 1015e?76,600/RTsec?1. Aspects of the kinetic mechanism are discussed and a system postulated to account for the high-temperature products.  相似文献   

20.
Analysis of the kinetics of the overall electrode reaction Me0 ? e? = Me2+ proceeding through the three consecutive charge-transfer steps Me0 ? e? = Me+ Me+ ? e? = Me2+ Me2+ ? e? = Me3+ involving non-adsorbed intermediates under transient single- and double-galvanostatic conditions has been made. Curves of η ? t were plotted and change of intermediate concentrations with time were calculated numerically for different ratios of exchange current densities. It is shown that when the time of reaching the steady-state, caused by the rate levelling of single-electron steps considerably exceeds the time of double-layer charging by the short duration current impulse, the employment of the galvanostatic double-pulse method allows the stepwise electrode process under non-stationary conditions to be investigated and information about the kinetics of the fastest steps in the reaction sequence to be obtained. Comparison of the conclusions of the analysis and experiment has been carried out by the galvanostatic double-pulse method in the stepwise electrode reaction Bi0 ?3 e? = Bi(III) on an amalgam electrode in 2 M HClO4 solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号