首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The thermal decomposition of the complexes M 2 I Cu(SO4)2 · 6 H2O and M2Ni(SO4)2 · · 6 H2O (MI=NH4, K, Rb, Tl) containing the complex cation MII(H2O)6 2+ (MIl = =Cu, Ni) was studied. The values of the experimental activation energyE obtained for the dehydration reactions of both complex cations were found to be influenced in different ways by the outer-sphere cations present. It was therefore concluded that the activation energy of the decomposition of Cu(H2O)6 2+ depends on the degree of tetragonal distortion of this cation, which increases with the ionic radius of cation MI. TheΔH values of the studied reactions depend less on the structures of the coordination polyhedra.  相似文献   

2.
Preparation and Properties of Na2CuII (SO4)2 · 6 H2O The preparation of the complex compound of Na2Cu(SO4)2 · 6 H2O is described. Its structure and properties were investigated using spectral methods (u.v.-vis., i.r., n.m.r.), by means of X-ray powder diffraction, and by thermal methods. On the basis of experimental results it is suggested that another member of the Tutton salts series has been prepared, appearring isostructural with them and showing the less distorted coordination polyhedron of [Cu(H2O)6]2+ from them. On its dehydration oxygen atoms from the sulphate groups enter the coordination sphere of CuII and the symmetry of SO42? becomes lower. The experimental results indicate that Na2Cu(SO4)2 · 6 H2O as also Na2Cu(SO4)2 as likewise Na2Cu(SO4)2 · 2 H2O are monoclinic.  相似文献   

3.
The paper reports an attempt to correlate the structures of hydrates of copper(II) sulphate with some characteristic features of the kinetics of their thermal decompositions. Non-isothermal thermogravimetric measurements were employed to obtain values of experimental activation energy and entropy for the dehydration of CuSO4 · 5 H2O, CuSO4 · 3 H2O and CuSO4 · H2O. The values ofE * andΔS * for the dehydration of CuSO4 · 3 H2O were found to be only little affected by the mode of preparation of this compound. On the other hand, the values ofE * andΔS * for the dehydration of CuSO4 · ·H2O are strongly dependent on whether this compound was prepared by thermal decomposition of CuSO4 · 5 H2O or CuSO4 · 3 H2O, or by crystallization from solution. As regards the crystalline hydrates of copper(II) sulphate, the greatest energetic hindrance for dehydration was observed for CuSO4 · 3 H2O. The experimental results are also discussed with respect to the present opinions concerning the possibilities of using thermal analyses to obtain information on the relationship between the structures and reactivities of solids.  相似文献   

4.
《Polyhedron》1986,5(10):1573-1577
The complex “Cu(SO4)(btaH)4·2H2O” (btaH = benzotriazole) deposited as deep blue crystals from aqueous CuSO4·5H2OH2SO4btaH solutions been shown by X-ray diffraction methods to be a monohydrate [Cu(SO4)(H2O)(btaH)3·btaH]. The crystals contain five-coordinate, tetragonal pyramidal Cu(SO4)(H2O)(btaH)3 units and bridging btaH molecules linked together by a three-dimensional array of H-bonding interactions.  相似文献   

5.
The thermal decomposition of FeSO4·6H2O was studied by mass spectroscopy coupled with DTA/TG thermal analysis under inert atmosphere. On the ground of TG measurements, the mechanism of decomposition of FeSO4·6H2O is: i) three dehydration steps FeSO4·6H2O FeSO4·4H2O+2H2O FeSO4·4H2O FeSO4·H2O+3H2O FeSO4·H2O FeSO4+H2O ii) two decomposition steps 6FeSO4 Fe2(SO4)3+2Fe2O3+2SO2 Fe2(SO4)3 Fe2O3+3SO2+3/2O2 The intermediate compound was identified as Fe2(SO4)3 and the final product as the hematite Fe2O3.  相似文献   

6.
To understand the structural and thermal properties of the mixed crystals, thermogravimetric (TG) and differential thermal analysis (DTA), and FTIR and Raman spectral studies were carried out for the mixed crystals of Zna/Mgb ammonium sulfate of composition namely 'a' (fraction by mass of salt Zn[NH4]2[SO4]2·6H2O to the total salt (both Zn[NH4]2[SO4]2·6H2O, Mg[NH4]2[SO4]2·6H2O or it can be explained as ZnaMgb[NH4]2[SO4]2·6H2O, a + b =1), and a = 0.1, 0.25, 0.333, 0.5, 0.666, 0.75 and 0.9 grown by a solution technique. From the correlation and analysis of the results obtained for the various crystals, the desolvation, decomposition, crystalline transition phenomena were identified. By close comparison of the endotherms, obtained for the various crystals, it was found that isomorphous substitution takes place in the crystals. Up to 0.5, Zn2+ ion replaces isomorphous Mg2+ ions in the lattice sites of Mg[NH4]2[SO4]2·6H2O and above 0.5, Mg2+ ions occupies the Zn2+ ion in the lattice sites of Zn[NH4]2[SO4]2·6H2O. Both crystals belong to monoclinic system with P 2(1)/a symmetry. The vibrations of NH4 + ion, SO4 2- ion, the complex [Mg(OH2)6]2+ the complex [Zn(OH2)6]2+ and the three different water molecules are identified. The linear distortion of SO4 2- ion is found to be greater than its angular distortion, while the NH4 + ion has suffered more angular distortion. The possibility of free rotation of the NH4 + ion is ruled out.  相似文献   

7.
New complexes of type [Cu(L1)2(OH2)]·4H2O (1), [Cu(L2)(OH2)]·0.5H2O (2) and [Cu3(L3)2(OH2)3]·0.5H2O (3) were synthesized by [1 + 1], [1 + 2] and [1 + 3], respectively, template condensation of 2,4,6-triamino-1,3,5-triazine and salicylic aldehyde in the presence of copper(II). The features of complexes have been established from microanalytical, IR and UV–Vis data. The thermal analyses have evidenced the thermal intervals of stability and also the accompanying thermodynamic effects. Processes as water elimination and oxidative degradation of the organic ligands were observed. After water elimination, complexes revealed a similar thermal behaviour. The final product of decomposition was copper(II) oxide as powder X-ray diffraction indicated.  相似文献   

8.
The experimental activation energies (E *) of dehydration of Cu(NH3)4(H2O)SO4, Cu(en)2(H2O)X2 (X=Cl?, Br?), Cu(en)(H2O)2SO4, Cu(py)2(H2O)2SO4, CuCl2 · 2H2O and M 2 I CuCl4 · 2H2O (M I =NH4, K, Rb) were obtained from their non-isothermal thermogravimetric curves using the Coats-Redfern method. TheseE * values were compared with known data on the structures of the Cu(II) coordination polyhedra in the above complexes. No dependence of theE * values was found on either the central atom — released ligand bond length, or the number and lengths of the hydrogen bonds formed by the released water molecules. However, it was found that it is justified to seek some relationship between theE * values and the anisotropic temperature factors of the donor atoms of the ligands split off.  相似文献   

9.
Non-isothermal studies of the dehydration of double salt hydrates of the type K2AB4·M(II)SO4·6H2O where AB4BeF2?4 or SeO2?4 and M(II)Mg(II), Co(II), Ni(II), Cu(II) or Zn(II) and their D2O analogues were carried out. Thermal parameters like activation energy, order of reaction, enthalpy change, etc., for each step of dehydration were evaluated from the analysis of TG, DTA and DTG curves. These parameters were compared with the corresponding double sulphate, i.e., K2SO4·M(II)SO4·6H2O and their D2O analogues. The role of divalent cation on the thermal properties of dehydration of the salt hydrates and also the effect on the thermal properties due to deuteration were discussed. The order of reaction was always found unity. The values of ΔH were within ~11-~19 kcal mol?1  相似文献   

10.
Reaction of a ligand N-(3,5-di-2-pyrazinyl-4H-1,2,4-triazol-4-yl)-2-pyrazinecarboxamide (Hpztp) with CuSO4 and Cu(acac)2 (acac = acetylacetonate), respectively, yields two distinct CuII coordination polymers {[Cu3(pztp)2(SO4)2(H2O)2]·3H2O} n and {[Cu(pztp)(acac)]·0.5H2O} n . Both complexes have been structurally determined and also characterized by physicochemical and spectroscopic methods. The results reveal that by using different anions (SO4 2? versus acac?), the dimensionality (from 2D to 1D) of the resulting coordination architectures as well as conformations and binding fashions of the pztp ligand are significantly changed. That is to say, the selection of anions will play a key role in inducing the formation of the crystalline materials. The thermal stabilities of both complexes have also been explored and discussed.  相似文献   

11.
Syntheses, Crystal Structures, and Thermal Behavior of Er2(SO4)3 · 8 H2O and Er2(SO4)3 · 4 H2O Evaporation of aqueous solutions of Er2(SO4)3 yields light pink single crystals of Er2(SO4)3 · 8 H2O. X-ray single crystal investigations show that the compound crystallizes monoclinically (C2/c, Z = 8, a = 1346.1(3), b = 667.21(1), c = 1816.2(6) pm, β = 101.90(3)°, Rall = 0.0169) with eightfold coordination of Er3+, according to Er(SO4)4(H2O)4. DSC- and temperature dependent X-ray powder investigations show that the decomposition of the hydrate follows a two step mechanism, firstly yielding Er2(SO4)3 · 3 H2O and finally Er2(SO4)3. Attempts to synthesize Er2(SO4)3 · 3 H2O led to another hydrate, Er2(SO4)3 · 4 H2O. There are two crystallographically different Er3+ ions in the triclinic structure (P 1, Z = 2, a = 663.5(2), b = 905.5(2), c = 1046.5(2) pm, α = 93.59(3)°, β = 107.18(2)°, γ = 99.12(3)°, Rall = 0.0248). Er(1)3+ is coordinated by five SO42– groups and three H2O molecules, Er(2)3+ is surrounded by six SO42– groups and one H2O molecule. The thermal decomposition of the tetrahydrate yields Er2(SO4)3 in a one step process. In both cases the dehydration produces the anhydrous sulfate in a modification different from the one known so far.  相似文献   

12.
Non-isothermal thermal studies of the dehydration of the double salt hydrates of the type M(I)2SO4·M(II)SO4·6H2O and their D2O analogues were carried out where M(I) = TI(I) and M(II) = Mg(II), Co(II), Ni(II), Cu(II) or Zn(II). Thermal parameters like activation energy, order of reaction, enthalpy change, etc. were evaluated from the analysis of TG, DTA and DTG curves. These thermal parameters were compared with those of other series, like NH4(I), K(I), Rb(I) and Cs(I) studied earlier. On deuteration the nature of dehydration altered in the case of Tl2Zn(SO4)2·6H2O only. The thermal stability of the salt hyd discussed in relation to the salt hydrates of other series. The role of divalent cation on the thermal properties of dehydration of salt hydrates is also discussed. The order of reaction was always found unity. The values of ΔH were within ≈12–≈16 kcal mol?1.  相似文献   

13.
Polyhalite (K2SO4 · MgSO4 · 2CaSO4 · 2H2O) and analogue triple salts, where Mg2+ is substituted by Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+, have been synthesized. The salts were characterized by thermal analysis, Raman spectroscopy and X-ray powder diffraction. Diffraction patterns and Raman spectra resemble those of natural polyhalite, except K2SO4 · CuSO4 · 2CaSO4 · 2H2O. The latter corresponds to the mineral leightonite, which is structurally different.  相似文献   

14.
Infrared spectra of the title compounds are presented and discussed in the regions of the uncoupled O–D stretches of matrix-isolated HDO molecules (isotopically dilute samples). The strengths of the hydrogen bonds are analyzed in terms of the respective Ow?O bond distances, the Be–OH2 interactions (synergetic effect), the proton acceptor capabilities of the sulfate and selenate oxygen atoms as deduced from Brown's bond valence sums of the oxygen atoms, the anti-cooperative effect (proton acceptor and proton donor competitive effect). The infrared spectroscopic experiments reveal that comparatively strong hydrogen bonds are formed in the compounds under study, analogical to other hydrated beryllium salts owing to the large ionic potential of the small Be2+ ions. The wavenumbers of νOD show that the water molecules in BeSO4·4H2O and in the double salts are strongly energetically distorted, i.e. their local symmetries deviate remarkably from the C2v molecular symmetry (for example, Δν have values of 74 and 36 cm?1 for H2O(1) and H2O(2) in K2Be(SO4)2·2H2O, and 119 cm?1 in BeSO4·4H2O). The hydrogen bonds in K2Be(SeO4)2·2H2O are stronger than those in K2Be(SO4)2·2H2O due to the stronger proton acceptor capability of the SeO42? ions. The proton donor strengths of the water molecules in K2Be(SO4)2·2H2O and K2Be(SeO4)2·2H2O are greater than those of the water molecules in BeSO4·4H2O and BeSeO4·4H2O (i.e. larger deviations from Mikenda's curve) due to the different compositions of the respective beryllium tetrahedra-Be(XO4)2(H2O)2 in the double salts and Be(H2O)4 in the simple ones (proton donor competitive effect). The intramolecular O–H bond lengths are derived from the νOD vs. rOH correlation curve [H.D. Lutz, C. Jung, J. Mol. Struct. 404 (1997) 63].  相似文献   

15.
Three halotrichites namely halotrichite Fe2+SO4·Al2(SO4)3·22H2O, apjohnite Mn2+SO4·Al2(SO4)3·22H2O and dietrichite ZnSO4·Al2(SO4)3·22H2O, were analysed by both dynamic, controlled rate thermogravimetric and differential thermogravimetric analysis. Because of the time limitation in the controlled rate experiment of 900 min, two experiments were undertaken (a) from ambient to 430 °C and (b) from 430 to 980 °C. For halotrichite in the dynamic experiment mass losses due to dehydration were observed at 80, 102, 319 and 343 °C. Three higher temperature mass losses occurred at 621, 750 and 805 °C. In the controlled rate thermal analysis experiment two isothermal dehydration steps are observed at 82 and 97 °C followed by a non-isothermal dehydration step at 328 °C. For apjohnite in the dynamic experiment mass losses due to dehydration were observed at 99, 116, 256, 271 and 304 °C. Two higher temperature mass losses occurred at 781 and 922 °C. In the controlled rate thermal analysis experiment three isothermal dehydration steps are observed at 57, 77 and 183 °C followed by a non-isothermal dehydration step at 294 °C. For dietrichite in the dynamic experiment mass losses due to dehydration were observed at 115, 173, 251, 276 and 342 °C. One higher temperature mass loss occurred at 746 °C. In the controlled rate thermal analysis experiment two isothermal dehydration steps are observed at 78 and 102 °C followed by three non-isothermal dehydration steps at 228, 243 and 323 °C. In the CRTA experiment a long isothermal step at 636 °C attributed to de-sulphation is observed.  相似文献   

16.
《Polyhedron》1986,5(9):1467-1473
Direct- and alternating-current polarograms of aqueous SO2 · OH2 solutions show four reduction waves, more than previously reported. Waves I and II probably result from the electroreduction of SO2 · OH2 and HSO3, respectively; these two waves completely overlap at pH 1 but are partially resolved at higher pH values due to different pH dependence. Reduction of SO2 · OH2 involves two electrons and two H+ ions and the initial product is probably sulfoxylic acid, H2SO2. This product can disproportionate to S0 and SO2 · OH2 in very acidic media (pH ≤ 1) and, in the limit, double the reduction current of SO2 · OH2. Reduction of HSO3 appears to occur via two paths: one is a two-electron three-H+ ion path and the other is a one-electron one-H+ ion path. The former dominates at pH ≤ 3 and probably produces H2SO2; the latter dominates at pH > 4 and may produce SO2. H2SO2 in less acidic media can react with HSO3 to yield dithionite species (such as H2S2O4, HS2O4 and S2O2−4) and HSO2 and SO2 by dissociation of the dithionite species. Waves III and IV are believed to result from reduction of HSO2 and SO2, respectively, to H2SO2 species.  相似文献   

17.
Polyhalite (K2SO4 · MgSO4 · 2CaSO4 · 2H2O) and analogue triple salts, where Mg2+ is substituted by Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+, have been synthesized. The salts were characterized by thermal analysis, Raman spectroscopy and X-ray powder diffraction. Diffraction patterns and Raman spectra resemble those of natural polyhalite, except K2SO4 · CuSO4 · 2CaSO4 · 2H2O. The latter corresponds to the mineral leightonite, which is structurally different. For polyhalite analogues the cell parameters of the triclinic unit cell have been determined from the powder diffraction patterns. The length of the unit cell vectors varies regularly with the ionic radius of the substituted ion M 2+ and is explained by changes in the extension of the coordination octahedron of M 2+. Thereby increasing distances of the coordinated water molecules at M 2+ parallel with decreasing dehydration temperatures of the corresponding polyhalite. Correspondence: Daniela Freyer, Institut für Anorganische Chemie, TU Bergakademie Freiberg, 09599 Freiberg, Germany.  相似文献   

18.
The third-law method has been applied to the results of kinetic studies reported in the literature and obtained in this work to determine the E parameters of the Arrhenius equation and investigate the impact of self-cooling on the dehydration kinetics of Li2SO4·H2O, CaSO4·2H2O and CuSO4·5H2O. The values obtained (104, 98 and 88 kJ mol-1, respectively) are about 20% higher compared to the literature data calculated by the Arrhenius-plots method. This discrepancy is connected with the severe effect of self-cooling, which can reach several ten degrees at maximum temperatures of experiments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Mixed single crystal was made by mixing saturated aqueous solutions of NiSO4 · 6H2O and CuSO4 · 5H2O by volume (80:20) and the mixture was kept to form the crystals at room temperature by slow evaporation process. After some days, big pieces of greenish blue, dark colored crystals were grown. To determine the weight of NiSO4 · 6H2O and CuSO4 · 5H2O in the crystal, Ni-DMG complexiometrical and EDTA gravimetrical analysis was done respectively. From this analysis it was concluded that 5.8 molecules of water of crystallization is present in the mixed single crystal. The crystals were characterized by UV-Visible, FTIR and single crystal X-ray diffraction studies. From single crystal XRD lattice parameters have been calculated. All these structural analysis confirms formation of new single crystal. Further, DTA-TGA, dc electrical conductivity and dielectric constant studies were done from the room temperature to 400 °C.From DTA studies it was observed that 5.8 molecules of water of crystallization get dehydrated in four major steps at temperature 115 °C, 150 °C, 240 °C and 325 °C respectively corresponding to the detachment of 1 mole, 3 moles, 1 mole and 0.8 mole of water of crystallization. DC electrical conductivity and dielectric constant studies also show close agreement to the dehydration steps. The observed peaks in the conductivity verses temperature graph have been explained on the basis of release of water molecules and subsequent dissociation of these released water molecules into H+ and OH ions.  相似文献   

20.
Most salt hydrates, especially those proposed for thermal-energy-storage applications, melt incongruently. In static systems, this property often leads to differences between the enthalpy of fusion and enthalpy of solidification. By means of differential scanning calorimetry (DSC), these differences have been determined for several salt hydrates. For Na2SO4 · 10 H2O, the enthalpy of solidification at or near the peritectic temperature is never more than 60% of the enthalpy of fusion; further cooling leads to a second phase transition at a temperature corresponding to eutectic melting of mixtures of ice and this hydrate. This asymmetrical melting and freezing behavior of Na2SO4 · 10 H2O decreases its potential as an energy-storing medium and also limits its usefulness for temperature calibration of DSC instruments. Sodium pyrophosphate decahydrate, Na4P2O7 · 10 H2O, although in some ways a higher temperature analog of Na2SO4 · 10 H2O, exhibited a smaller discrepancy between the enthalpies of fusion and of solidification; its relatively high transition temperature permits a more rapid solidification reaction than is the case for Na2SO4 · 10 H2O. For Mg(NO3)2 · 6 H2O, a congruently melting compound, the magnitude of ΔH of crystallization equalled ΔH of fusion, even when supercooling occurred; a solid-state transition at 73°C, with ΔH = 2.9 cal g?1, was detected for this hydrate. MgCl2 · 6 H2O, which melts almost congruently, exhibited no disparity between ΔH of crystallization and ΔH of fusion. CuSO4 · 5 H2O and Na2B4O7 · 10 H2O exhibited marked disparities. Na2B4O7 · 10 H2O formed metastable Na2B4O7sd 5 H2O at the phase transition; this was derived from the transition temperature and verified by relating the observed ΔH of transition to heats of hydration. Peritectic solidification of hydrates can be viewed as a dual process: crystallization from the liquid solution and reaction of the lower hydrate (or anhydrate) with the solution; where ΔH of solidification appears to be less in magnitude than the ΔH of fusion, the difference can be attributed to slower reaction rate between solution and the lower hydrate. New or previously unreported values for ΔH of fusion obtained in this study were, in cal g?1: Mg(NO3)2 · 6 H2O, 36; Na4P2O7 · 10 H2O, 59; CuSO4 · 5 H2O, 32; Na2B4O7 · 10 H2O, 33.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号