首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrophobic patch of azurin (AZ) from Pseudomonas aeruginosa is an important recognition surface for electron transfer (ET) reactions. The influence of changing the size of this region, by mutating the C-terminal copper-binding loop, on the ET reactivity of AZ adsorbed on gold electrodes modified with alkanethiol self-assembled monolayers (SAMs) has been studied. The distance-dependence of ET kinetics measured by cyclic voltammetry using SAMs of variable chain length, demonstrates that the activation barrier for short-range ET is dominated by the dynamics of molecular rearrangements accompanying ET at the AZ-SAM interface. These include internal electric field-dependent low-amplitude protein motions and the reorganization of interfacial water molecules, but not protein reorientation. Interfacial molecular dynamics also control the kinetics of short-range ET for electrostatically and covalently immobilized cytochrome c. This mechanism therefore may be utilized for short-distance ET irrespective of the type of metal center, the surface electrostatic potential, and the nature of the protein-SAM interaction.  相似文献   

2.
Electron transfer (ET) rate kinetics through n-alkanethiol self-assembled monolayers (SAMs) of alkanethiols of different chain lengths [Me(CH2)nSH; n=8, 10, 11, 15] on Au and Hg surfaces and ferrocene (Fc)-terminated SAMs (poly-norbornylogous and HS(CH2)12CONHCH2Fc) on Au were studied using cyclic voltammetry and scanning electrochemical microscopy (SECM). The SECM results allow determination of the ET kinetics of solution-phase Ru(NH3)63+/2+ through the alkanethiol SAMs on Au and Hg. A model using the potential dependence of the measured rate constants is proposed to compensate for the pinhole contribution. Extrapolated values of koML for Ru(NH3)63+/2+ using the model follow the expected exponential decay (beta is 0.9) for different chain lengths. For a Fc-terminated poly-norbornyl SAM, the standard rate constant of direct tunneling (ko is 189+/-31 s(-1)) is in the same order as the ko value of HS(CH2)12CONHCH2Fc. In blocking and Fc SAMs, the rates of ET are demonstrated to follow Butler-Volmer kinetics with transfer coefficients alpha of 0.5. Lower values of alpha are treated as a result of the pinhole contribution. The normalized rates of ET are 3 orders of magnitude higher for Fc-terminated than for blocking monolayers. Scanning electron microscopy imaging of Pd nanoparticles electrochemically deposited in pinholes of blocking SAMs was used to confirm the presence of pinholes.  相似文献   

3.
Electron transfer (ET) to a redox probe in solution across the self-assembled monolayers (SAMs) of a tris-(2-pyridylmethyl)amine-based ligand on gold electrodes is greatly enhanced by Cu-binding.  相似文献   

4.
A time-resolved kinetic study of the reactions of ring-substituted cumyloxyl radicals (4-X-CumO(?): X = OMe, t-Bu, Me, Cl, CF(3)) with methylferrocenes (Me(n)Fc: n = 2, 8, 10) has been carried out in acetonitrile solution. Evidence for an electron transfer (ET) process has been obtained for all radicals and an increase in reactivity has been observed on decreasing the oxidation potential of the ferrocene donor and on going from electron-releasing to electron-withdrawing ring substituents. Computations predict the formation of strongly bound π-stacked 4-X-CumO(?)/DcMFc complexes, characterized by intracomplex π-π distances around 4 ?. These findings point toward a (nonbonded) inner-sphere ET mechanism for the reactions of the 4-X-CumO(?)/Me(n)Fc couples.  相似文献   

5.
The oft-cited complexity of tethered ferrocene electrochemistry in single component (FcRS-) or binary (FcRS-/CH3R'S-) self-assembled monolayers (SAMs) on gold has been investigated. The complex voltammetry is shown to be linked to local electrostatics caused by the formation of the ferrocenium ion. This conclusion is reached by studying model effects in binary SAMs, where a cationic alkylthiolate (H3N+ C11S-Au) is mixed with FcC12S-Au. A fitting procedure involving both a Gaussian and a Lorentzian distribution is used for deconvolution of the two peaks which are consistently observed in the SAMs when chi(Fc)surf > or = 0.2. The lower-potential (E degrees ' = 250 mV) and higher-potential (E degrees ' = 350 mV) voltammetric peaks are assigned to Fc moieties in "isolated" and "clustered" states, respectively. Use of this method to better understand SAM structure is demonstrated by distinguishing the degree of homogeneity in two binary SAMs of similar composition.  相似文献   

6.
Study of electron transfer in ferrocene-labeled collagen-like peptides   总被引:1,自引:0,他引:1  
This study describes the electron transfer (ET) phenomenon through a series of (Pro-Hyp-Gly) repeat units containing collagen mimics. The peptides contain redox-active ferrocene (Fc) and thiol-functionalized cystein (Cys) at the N- and C-terminals, respectively. Peptide films were prepared on gold surfaces and characterized by X-ray photoelectron spectroscopy (XPS), ellipsometry, and Fourier transform-reflection absorption infrared spectroscopy (FT-RAIRS). Electrochemical investigations of the films showed a linear but weakly distance-dependent ET. The importance of H-bonding was realized, and the possibility of a conformationally gated ET mechanism has been discussed.  相似文献   

7.
Proven electrochemical approaches were applied to study heterogeneous electron transfer (ET) between selected redox couples and gold electrodes modified with alkanethiol self-assembled monolayers (SAMs), using the room-temperature ionic liquid (RTIL) [bmim][NTf2] as reaction medium; ferrocene as freely diffusing redox probe in the RTIL was tested for ET through both thin (butanethiol) and thick (dodecanethiol) assemblages at pressures up to 150 MPa; well behaved kinetic patterns and reproducibility of data were demonstrated for ET within the unique Au/SAM/RTIL arrays.  相似文献   

8.
We report in-plane enyne metathesis and subsequent Diels-Alder reactions on self-assembled monolayers (SAMs) terminating in vinyl and acetylenyl groups on gold. After the formation of SAMs of vinyl and acetylenyl group-containing dithiols on gold, in-plane enyne metathesis of the vinyl and acetylenyl groups, leading to the formation of 1,3-diene, was achieved on the SAMs, and Diels-Alder reactions were then successfully performed with tetracyanoethylene, maleic anhydride, and maleimide. The reactions were confirmed by FT-IR spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary-ion mass spectrometry. In-plane enyne metathesis developed herein would offer a versatile platform for the functionalization of surfaces with mild reaction conditions and a high compatibility in functional groups.  相似文献   

9.
Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and digital simulation techniques were used to investigate quantitatively the mechanism of electron transfer (ET) through densely packed and well-ordered self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid on gold, either pristine or modified by physically adsorbed glucose oxidase (GOx). In the presence of ferrocenylmethanol (FcMeOH) as a redox mediator, ET kinetics involving either solution-phase hydrophilic redox probes such as [Fe(CN)6]3-/4- or surface-immobilized GOx is greatly accelerated: [Fe(CN)6]3-/4- undergoes diffusion-controlled ET, while the enzymatic electrochemical conversion of glucose to gluconolactone is efficiently sustained by FcMeOH. Analysis of the results, also including the digital simulation of CV and EIS data, showed the prevalence of an ET mechanism according to the so-called membrane model that comprises the permeation of the redox mediator within the SAM and the intermolecular ET to the redox probe located outside the monolayer. The analysis of the catalytic current generated at the GOx/SAM electrode in the presence of glucose and FcMeOH allowed the high surface protein coverage suggested by X-ray photoelectron spectroscopy (XPS) measurements to be confirmed.  相似文献   

10.
为了寻求新的自组装单分子膜体系,构建新的功能膜,研究了具备平面型的大环共轭硒杂环化合物-- 4,5-苯并苤硒脑(苯并[c]硒二唑,简称苤硒脑)在金表面的自组装单分子膜.通过X射线光电子能谱(XPS)和电化学手段对其进行表征.XPS研究结果表明,自组装形成单分子膜后,苤硒脑分子中Se3d结合能从57.4 eV下降到57.1 eV;表明硒杂环化合物是通过金硒键固定在金表面上的;电化学循环伏安法实验表明,金电极表面上自组装该有机硒后, Fe(CN)63-/4-的氧化还原峰几乎完全消失;以四硼酸钠为底液,测得该化合物自组装在金表面上时,其还原电位在-0.66 V,与在溶液中用裸金电极测得的还原峰电位基本一致.  相似文献   

11.
《Electroanalysis》2006,18(7):684-694
Thin films of polymers tethered with both atrazine haptens and ferrocenyl (Fc) probes were formed on polycrystalline gold electrodes by taking advantage of the facile formation of self‐assembled monolayers (SAMs) of thiolates. These films were characterized by polarization modulation Fourier transform infrared reflection–absorption spectrometry (PM‐IRRAS), X‐ray photoelectron spectroscopy (XPS) and cyclic voltammetry. The combination of these techniques gave a full insight into the structure and the binding mode of the polymers and provided useful quantitative information about both Fc entity and atrazine hapten surface density. This may open the way to a new type of immunosensor for atrazine monitoring.  相似文献   

12.
We investigated the electron transfer (ET) rates between a well-defined gold electrode and cytochrome c immobilized at the carboxylic acid terminus of alkanethiol self-assembled monolayers (SAMs) by using the potential modulated electroreflectance technique. A logarithmic plot of ET rates against the chain length of the alkanethiol is linear with long chain alkanethiols. The ET rates become independent of the chain length with short alkanethiols. It is proposed that the rate-limiting ET step through short alkyl chains results from a configurational rearrangement process preceding the ET event. This "gating" process arises from a rearrangement of the cytochrome c from a thermodynamically stable binding form on the carboxylic acid terminus to a configuration, which facilitates the most efficient ET pathways (surface diffusion process). We propose that the lysine-13 of mammalian cytochrome c facilitates the most efficient ET pathway to the carboxylate terminus and this proposal is supported by the ET reaction rate of a rat cytochrome c mutant (RC9-K13A) [Elektrokhimiya (2001) in press], in which lysine-13 is replaced by alanine. The ET rate of K13A is more than six orders of magnitude smaller than that of the native protein.  相似文献   

13.
Untrimethylated yeast iso-1-cytochrome c (cytc) and its single and multiple Lys to Ala variants at the surface lysines 72, 73, and 79 were adsorbed on carboxyalkanethiol self-assembled monolayers (SAMs) on gold, and the thermodynamics and kinetics of the heterogeneous protein-electrode electron-transfer (ET) reaction were determined by voltammetry. The reaction thermodynamics were also measured for the same species freely diffusing in solution. The selected lysine residues surround the heme group and contribute to the positively charged domain of cytc involved in the binding to redox partners and to carboxyl-terminated SAM-coated surfaces. The E degrees' (standard reduction potential) values for the proteins immobilized on SAMs made of 11-mercapto-1-undecanoic acid and 11-mercapto-1-undecanol on gold were found to be lower than those for the corresponding diffusing species owing to the stabilization of the ferric state by the negatively charged SAM. For the immobilized proteins, Lys to Ala substitution(s) do not affect the surface coverage, but induce significant changes in the E degrees' values, which do not simply follow the Coulomb law. The results suggest that the species-dependent orientation of the protein (and thereby of the heme group) toward the negatively charged SAM influences the electrostatic interaction and the resulting E degree' change. Moreover, these charge suppressions moderately affect the kinetics of the heterogeneous ET acting on the reorganization energy and the donor-acceptor distance. The kinetic data suggest that none of the studied lysines belong to the interfacial ET pathway.  相似文献   

14.
The kinetics of electrocatalytic oxidation of ascorbate was studied on a series of redox self-assembled monolayers (SAMs) of the general formula Fc(CH2)4COO(CH2)nSH as electron-transfer mediators, where Fc is the ferrocenyl group and n = 3, 6, 9, and 11. We show that the rate of electron transfer from ascorbate to the surface-confined Fc+ decreases with increasing n. The rationale for the dependence of the rate of electrocatalytic activity and n, in the presence of ClO4, is obtained from Fourier-transform surface-enhanced Raman spectroscopy (FT-SERS), cyclic voltammetry, and electrochemical quartz crystal microbalance (EQCM) data. In particular, FT-SERS shows decreasing amounts of surface-bound ClO4- upon oxidation of the ferrocene with decreasing n, while EQCM data show the effective electrode mass increase was consistently higher on the shorter chain SAMs. This mass increase is likely due to increasing ferricinium cation hydration. As n decreases, the SAMs become less ordered (FT-SERS data), as is widely known from previous literature. Disorder favors water penetration into the SAM, which, in turn, increases the hydration of the Fc+ (EQCM data). Increased hydration of the Fc+ impedes the formation of Fc+-ClO4- ion pairs (EQCM and FT-SERS data), which, consequently, accelerates the electrocatalytic electron transfer from the solution-dissolved ascorbate.  相似文献   

15.
In this paper we present a new, simple, and reproducible method for the rapid determination of the temperature dependence of solution phase surface reactions of organic thin films on solid supports. Instead of estimating the extent of reaction for many separate samples for many different temperatures sequentially, we exploit in our new high throughput combinatorial approach surface reactions carried out under a thermal gradient followed by position-resolved contact angle (CA) measurements. The reaction kinetics, activation energies, and entropies are, thus, accessible on the basis of measurements on a very limited set of samples that differ in reaction times. The kinetics and temperature dependence of surface reactions of the previously studied alkaline hydrolysis of 11,11'-dithiobis(N-hydroxysuccinimidylundecanoate) (NHS-C10) self-assembled monolayers (SAMs) on gold, as well as the ester hydrolysis in SAMs of the novel disulfide 11,11-dithiobis(tert-butylundecanoate) (t-Bu-C10), were investigated in detail using the conventional sequential and the new combinatorial approach. The reaction kinetics, corresponding apparent rate constants k, and activation energies Ea, as well as activation entropies deltaS double dagger, determined according to both approaches agree well with each other to within the experimental error. Hence, these parameters can be quantitatively determined using the described combinatorial approach. A comparison of the reactions of the two model systems indicated that the transition state is tighter for the acid-catalyzed ester hydrolysis in SAMs of the novel disulfide t-Bu-C10 compared to the hydrolysis of the ester groups in SAMs of NHS-C10 on gold.  相似文献   

16.
We report the fabrication and characterization of new self-assembled monolayers (SAMs) formed from dihexadecyldithiophosphinic acid [(C(16))(2)DTPA] molecules on gold substrates. In these SAMs, the ability of the (C(16))(2)DTPA headgroup to chelate to the gold surface depends on the morphology of the gold substrate. Gold substrates fabricated by electron-beam evaporation (As-Dep gold) consist of ~50-nm grains separated by deep grain boundaries (~10 nm). These grain boundaries inhibit the chelation of (C(16))(2)DTPA adsorbates to the surface, producing SAMs in which there is a mixture of monodentate and bidentate adsorbates. In contrast, gold substrates produced by template stripping (TS gold) consist of larger grains (~200-500 nm) with shallower grain boundaries (<2 nm). On these substrates, the low density of shallow grain boundaries allows (C(16))(2)DTPA molecules to chelate to the surface, producing SAMs in which all molecules are bidentate. The content of bidentate adsorbates in (C(16))(2)DTPA SAMs formed on As-Dep and TS gold substrates strongly affects the SAM properties: Alkyl chain organization, wettability, frictional response, barrier properties, thickness, and thermal stability all depend on whether a SAM has been formed on As-Dep or TS gold. This study demonstrates that substrate morphology has an important influence on the structure of SAMs formed from these chelating adsorbates.  相似文献   

17.
In this paper, we report the reactivity of fluoro-N,N,N',N'-tetramethylformamidinium hexafluorophosphate (TFFH), a reagent for transformation of carboxylic acids into acid fluorides in solution, toward self-assembled monolayers (SAMs) of 16-mercaptohexadecanoic acid on gold. Contrary to the solution-based reactions, we found that only interchain carboxylic anhydrides (ICAs), not acid fluorides (AFs), were obtained at surfaces by the facile interchain reaction under most reaction conditions studied. AFs were found to be formed only when tetrabutylammonium fluoride, a reagent inducing fast decomposition of ICAs, was added to the reaction mixture. The reactivity of TFFH toward carboxylic acid-terminated SAMs was different from that of cyanuric fluoride, which has been reported previously (Langmuir 2005, 21, 11765-11772). This study provides more insight into the role of the proximity effect in SAM-based reactions as well as another approach to the formation of ICAs from carboxylic acid-terminated SAMs.  相似文献   

18.
Self-assembled monolayers (SAMs) of alkanethiols have been photooxidized by exposure to light from a lamp emitting light with a wavelength of 254 nm. The data confirm that SAM oxidation on exposure to UV light sources occurs in the absence of ozone, but also suggest that the mechanism is different from that observed in previous studies using broad-spectrum arc lamps. In particular, for monolayers on both gold and silver, carboxylic acid-terminated SAMs oxidize significantly faster than methyl-terminated SAMs, in contrast to earlier observations for monolayers exposed to light from a mercury arc lamp. The difference in rates of photooxidation for the two classes of monolayer is significantly greater on silver than on gold. These data support our recent suggestion that while methyl-terminated SAMs are able to pack much more closely on silver than on gold, carboxylic acid-terminated thiols are not able to adopt the same close-packed structures, and their rates of photooxidation on silver are similar to, or slightly greater than, those measured for the same adsorbates on gold. Surface potential measurements were made for carboxylic acid- and methyl-terminated SAMs using a Kelvin probe apparatus. It was found that the work functions of carboxylic acid-terminated SAMs are significantly greater than those of methyl-terminated monolayers. It is concluded that these data are consistent with the oxidation reaction being initiated by "hot" electrons generated following the interaction of photons with the metallic substrate.  相似文献   

19.
<正>The oxidation of hydroquinone(QH_2) was investigated for the first time at liquid/liquid(L/L) interface by scanning electrochemical microscopy(SECM).In this study,electron transfer(ET) from QH_2 in aqueous to ferrocene(Fc) in nitrobenzene (NB) was probed.The apparent heterogeneous rate constants for ET reactions were obtained by fitting the experimental approach curves to the theoretical values.The results showed that the rate constants for oxidation reaction of QH_2 were sensitive to the changes of the driving force,which increased as the driving force increased.In addition,factors that would affect ET of QH_2 were studied.Experimental results indicated ion situation around QH_2 molecule could change the magnitude of the rate constants because the capability of oxidation of QH_2 would be affected by them.  相似文献   

20.
Organic thiols are known to react with gold surface to form self-assembled monolayers (SAMs), which can be used to produce materials with highly attractive properties. Although the structure of various SAMs is widely investigated, some aspects of their formation still represent a matter of debate. One of these aspects is the mechanism of S-H bond dissociation in thiols upon interaction with gold. This work presents a new suggestion for this mechanism on the basis of DFT study of methanethiol interaction with a single gold atom and a Au(20) cluster. The reaction path of dissociation is found to be qualitatively independent of the model employed. However, the highest activation barrier of S-H bond dissociation on the single gold atom (12.9 kcal/mol) is considerably lower than that on the Au(20) cluster (28.9 kcal/mol), which can be attributed to the higher extent of gold unsaturation. The energy barrier of S-H cleavage decreases by 4.6 kcal/mol in the presence of the second methanethiol molecule at the same adsorption site on the model gold atom. In the case of the Au(20) cluster we have observed the phenomenon of hydrogen transfer from one methanethiol molecule to another, which allows reducing the energy barrier of dissociation by 9.1 kcal/mol. This indicates the possibility of the "relay" hydrogen transfer to be the key step of the thiol adsorption observed for the SAMs systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号