首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper deals with the Laplace equation in a bounded regular domain Ω of RN (N?2) coupled with a dynamical boundary condition of reactive-diffusive type. In particular we study the problem
  相似文献   

2.
In this paper, we investigate the correct solvability for the Laplace equation with a nonlocal boundary condition in the unit ball. The considered boundary operator is of fractional order. This problem is a generalization of the well‐known Bitsadze–Samarskii problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouville sense. The considered problem is a generalization of the known Dirichlet and Neumann problems.  相似文献   

4.
In this paper, the finite difference scheme is developed for the time-space fractional diffusion equation with Dirichlet and fractional boundary conditions. The time and space fractional derivatives are considered in the senses of Caputo and Riemann-Liouville, respectively. The stability and convergence of the proposed numerical scheme are strictly proved, and the convergence order is O(τ2−α+h2). Numerical experiments are performed to confirm the accuracy and efficiency of our scheme.  相似文献   

5.
This paper is concerned with the boundary value problem of a nonlinear fractional differential equation.By means of Schauder fixed-point theorem,an existence result of solution is obtained.  相似文献   

6.
We consider a Euler–Bernoulli beam equation with a boundary control condition of fractional derivative type. We study stability of the system using the semigroup theory of linear operators and a result obtained by Borichev and Tomilov. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The purpose of the current study is to investigate IBVP for spatial-time fractional differential equation with Hadamard fractional derivative and fractional Laplace operator(−Δ)β. A new Hadamard fractional extremum principle is established. Based on the new result, a Hadamard fractional maximum principle is also proposed. Furthermore, the maximum principle is applied to linear and nonlinear Hadamard fractional equations to obtain the uniqueness and continuous dependence of the solution of the IBVP at hand.  相似文献   

8.
In this article, we introduce the triple Laplace transform for the solution of a class of fractional order partial differential equations. As a consequence, fractional order homogeneous heat equation in 2 dimensions is investigated in detail. The corresponding solution is obtained by using the aforementioned triple Laplace transform, which is the generalization of double Laplace transform. Numerical plots to the concerned solutions are provided to demonstrate our results.  相似文献   

9.
In this paper, we investigate the existence of solutions of the periodic boundary value problem for nonlinear impulsive fractional differential equation involving Riemann-Liouville sequential fractional derivative by using monotone iterative method. An example is presented to illustrate our main result.  相似文献   

10.
In this paper, we develop a practical numerical method to approximate a fractional diffusion equation with Dirichlet and fractional boundary conditions. An approach based on the classical Crank–Nicolson method combined with spatial extrapolation is used to obtain temporally and spatially second‐order accurate numerical estimates. The solvability, stability, and convergence of the proposed numerical scheme are proved via the Gershgorin theorem. Numerical experiments are performed to confirm the accuracy and efficiency of our scheme.  相似文献   

11.
This paper deals with the heat equation posed in a bounded regular domain Ω of RN (N?2) coupled with a dynamical boundary condition of reactive-diffusive type. In particular we study the problem
  相似文献   

12.
13.
In this paper we consider a semilinear parabolic equation ut=Δuc(x,t)up for (x,t)∈Ω×(0,) with nonlinear and nonlocal boundary condition uΩ×(0,)=∫Ωk(x,y,t)uldy and nonnegative initial data where p>0 and l>0. We prove some global existence results. Criteria on this problem which determine whether the solutions blow up in finite time for large or for all nontrivial initial data are also given.  相似文献   

14.
In this article we consider the inverse problem of identifying a time dependent unknown coefficient in a parabolic problem subject to initial and non-local boundary conditions along with an overspecified condition defined at a specific point in the spatial domain. Due to the non-local boundary condition, the system of linear equations resulting from the backward Euler approximation have a coefficient matrix that is a quasi-tridiagonal matrix. We consider an efficient method for solving the linear system and the predictor–corrector method for calculating the solution and updating the estimate of the unknown coefficient. Two model problems are solved to demonstrate the performance of the methods.  相似文献   

15.
利用锥拉伸和压缩不动点定理,研究了一类具有Riemann-Liouvile分数阶积分条件的分数阶微分方程组边值问题.结合该问题相应Green函数的性质,获得了其正解的存在性条件,并给出了一些应用实例.  相似文献   

16.
We considered the Cauchy problem for the fractional wave-diffusion equation $$D^αu-Δ|u|^{m-1}u+(-Δ)^{β/2}D^γ|u|^{l-1}u=h(x,t)|u|^p+f(x,t)$$ with given initial data and where p > 1, 1 < α < 2, 0 < β < 2, 0 < γ < 1. Nonexistence results and necessary conditions for global existence are established by means of the test function method. This results extend previous works.  相似文献   

17.
We study the boundedness and a priori bounds of global solutions of the problem Δu=0 in Ω×(0, T), (∂u/∂t) + (∂u/∂ν) = h(u) on ∂Ω×(0, T), where Ω is a bounded domain in ℝN, ν is the outer normal on ∂Ω and h is a superlinear function. As an application of our results we show the existence of sign-changing stationary solutions. © 1997 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

18.
In this work we investigate the existence and asymptotic profile of a family of layered stable stationary solutions to the scalar equation ut=ε2Δu+f(u) in a smooth bounded domain ΩR3 under the boundary condition ενu=δεg(u). It is assumed that Ω has a cross-section which locally minimizes area and limε→0εlnδε=κ, with 0?κ<∞ and δε>1 when κ=0. The functions f and g are of bistable type and do not necessarily have the same zeros what makes the asymptotic geometric profile of the solutions on the boundary to be different from the one in the interior.  相似文献   

19.
We find the conditions for the unique solvability of the inverse problem for a time‐fractional diffusion equation with Schwarz‐type distributions in the right‐hand sides. This problem is to find a generalized solution of the Cauchy problem and an unknown space‐dependent part of an equation's right‐hand side under a time‐integral overdetermination condition.  相似文献   

20.
Y. Xu 《Applicable analysis》2013,92(9):1143-1152
We consider a free boundary problem of heat equation with integral condition on the unknown free boundary. Results of solution regularity and problem well-posedness are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号