首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Methylammonium dicitratoborate CH3NH3[(C6H6O7)2B] (I) was synthesized for the first time. The crystal structure of the compound was studied by X-ray crystallography. Crystals of I are triclinic, space group P \(\bar 1\), a = 8.9726(3) Å, b = 10.1039(3) Å, c = 10.7231(4) Å, α = 66.894(1)°, β = 85.347(1)°, γ = 84.991(2)°, V = 889.57(5) Å3, Z = 2, ρcalcd = 1.580 g/cm3. Crystals of I are built up from large dicitratoborate anions with a spiran structure and methylammonium cations. The crystals have a layered structure. A hydrogen-bond system is formed by seven independent contacts O(N)-H?O.  相似文献   

2.
Single crystals of diisopropylammonium dicitratoborate of the formula (C3H7)2NH2[(C6H6O7)2B] (I) were prepared and characterized by X-ray diffraction. The crystals are monoclinic, space group C2/c, a = 15.9978(5) Å, b = 11.0805(4) Å, c = 13.1872(4) Å, α = 90°, β = 103.34(1)°, γ = 90°, Z = 8, V = 2274.5 (1) Å 3, Z = 8, ρcalc = 1.440 g/cm3, 2237 reflections with I > 2σ(I); R1 = 0.0408. Structure I is built from complex spiran-type dicitratoborate anions and diisopropylammonium cations. In the crystal packing, the anions and the cations form staggered stacks linked by a system of hydrogen bonds involving three independent contacts O(N)-H...O. X-ray diffraction data for structure I were compared with those for complexes of boric and citric acids with ammonium and alkylammonium cations.  相似文献   

3.
N,N-Diethylanilinium dicitratoborate [C6H5NH(C2H5)2][(C6H6O7)2B] (I) has been synthesized for the first time. Single crystals has been synthesized in an aqueous solution to study the crystal structure of complex I by single-crystal X-ray diffraction. Crystals are triclinic, space group Р1 a = 9.6183(2) Å, b = 10.3153(3) Å, c = 13.7364(4) Å, α = 69.0304(12)°, β = 77.0394(13)°, γ = 89.5518(10)°, V = 1236.25(6) Å3, Z = 2, ρcalcd = 1.454 g/cm3. Structural units in a crystal of complex I are large complex dicitratoborate anions with a spirane structure and N,N-diethylanilinium cations. The crystal packing is a three-dimensional framework implemented via a system of hydrogen bonds like О–Н…О, О–Н…О, ОI, and N–Н…О.  相似文献   

4.
2-Methyl-8-oxyquinolinium dicitratoborate dihydrate [(2-CН3)(8-OH)C6H5NH][(C6H5O7)2B] ? 2H2O (I) was synthesized for the first time. Single crystals were synthesized in an aqueous solution, and their crystal structure was studied by X-ray diffraction. Crystals were triclinic, space group P\(\bar 1\), a = 9.3454(2) Å, b = 9.8522(2) Å, c = 15.6638(4) Å, α = 78.489(1)°, β = 77.255(1)°, γ = 63.622(2)°, FW = 587.25, V = 1251.68(5) Å3, Z = 2, ρcalc = 1.558 g/cm3. The structure was refined by the full-matrix least-squares technique to R1 = 0.045 for 4689 independent reflections with Rint = 0.072. Crystal structure units in complex I were large complex dicitratoborate anions with a spirane structure, 2-methyl-8-oxyquinolinium cations [(2-CН3)(8-OH)C6H5NH]+, and two crystallization water molecules. The crystal packing was layered and three-dimensional. The network of hydrogen bonds in crystals was created by seven independent three-center O–H···O contacts.  相似文献   

5.
Two complexes, namely, triaqua(18-crown-6)strontium dibromide monohydrate (I) and diaquabromo(18-crown-6)barium bromide (II), are synthesized. Their crystal structures are determined by X-ray diffraction analyses. For complex I, space group C2/c, a = 17.547 Å, b = 10.246 Å, c = 14.786 Å, β = 123.08°, Z = 4. For complex II, space group Pnma, a = 17.753 Å, b = 17.465 Å, c = 6.629 Å, Z = 4. The structures are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.056 (I) and 0.042 (II) for 2696 (I) and 2440 (II) independent reflections (CAD-4 automated diffractometer, λMoK α radiation). Both complex cations—randomly disordered [Sr(18C6)(H2O)3]2+ in complex I and [BaBr(18C6)(H2O)2]+ in complex II—are of the host-guest type. The Sr2+ (Ba2+) cation resides in the cavity of the 18-crown-6 ligand and coordinated by all six O atoms. In the structures complexes I and II, the coordination polyhedra of the Sr2+ and Ba2+ cations (coordination number 9) can be described as distorted hexagonal bipyramids with one apex at the O atom of the water molecule in complex I or at the Br? ligand in complex II and the other split apex at the O atoms of two water molecules.  相似文献   

6.
The crystal structures of compounds of the composition [Rh(H2O)6]2(SO4)3·5H2O (I) and [Rh(H2O)6]PO4 (II) are determined. Crystallographic data for I: a = 7.272(9) Å, b = 27.047(1) Å, c = 12.464(9) Å, β = 97.038(10)°, P21 space group, Z = 4, d x = 2.184 g/cm3; for II: a = 9.746(6)Å, b = 6.877(7) Å, c = 23.623(6) Å, β = 100.601(10)°, C2/c space group, Z = 8, d x = 2.611 g/cm3. Compounds are analyzed by IR spectroscopy and powder XRD. Crystalline phase I is well soluble in water, whereas II is almost insoluble.  相似文献   

7.
Single crystal X-ray diffraction at a temperature of 150(2) K is used to determine the structures of two magnesium complexes with trifluoroacetylacetone: [Mg(tfac)2]3I and [Mg(H2O)2(tfac)2]·H2O II. Crystallographic data for I: space group P21/n, a = 12.5226(10) Å, b = 13.0591(7) Å, c = 12.6034(13) Å, β = 95.243(2)°, V = 2052.5(3) Å3, Z = 2; for II: space group P21/c, a = 10.826(2) Å, b = 7.0742(13) Å, c = 21.858(4) Å, β = 102.712(5)°, V = 1632.9(5) Å3, Z = 4. The isle structure of I is formed by linear trimeric molecules; in the structure of II the molecules of the complex and crystallization water form a layered framework using hydrogen bondings; the coordinated water molecules are in a trans position. The magnesium atoms have a distorted octahedral coordination environment, the Mg–O distances are 1.991(4)- 2.146(4) Å and 2.040(5)-2.073(5) Å in molecules of I and II respectively.  相似文献   

8.
Double complex salts (DCS) [RuNO(NH3)4(H2O)]2[MCl4]Cl4·2H2O, M = Pt (I) and Pd (II), are prepared and characterized using IR spectroscopy, single crystal and powder X-ray diffraction, and thermogravimetric analysis. Crystalline phases of I and II are isostructural (P2(1)/n space group) and have the following crystallographic characteristics: a = 6.689 Å, b = 15.609 Å, c = 12.348 Å, V = 1289.1 Å3, Z = 2, d x = 2.425 g/cm3 (I) and a = 6.637 Å, b = 15.521 Å, c = 12.244 Å, V = 1261.2 Å3, Z = 2, d x = 2.255 g/cm3 (II). The thermolysis of the obtained DCS in the hydrogen atmosphere affords two-phase mixtures of limited solid solutions of the metals: hcp for ruthenium-based ones and fcc for Pt or Pd based solutions. On decomposition in the helium atmosphere the products contain a minor amount of RuO2. For the phases obtained during thermolysis the parameters are determined and the compositions are estimated. The heating of I to 400°C in the helium-air atmosphere yields a nanocrystalline composite Pt+RuO2 with CSR of ~20 nm.  相似文献   

9.
The structures of catena-[K(μ6-Hba?O,O,O,O′,O′,O″)] (I) and catena-[Cs(μ6-Hba–O,O,O′,O′,O″,O″)] (II), where Н2ba is barbituric acid C4H4N2O3, were characterized by powder X-ray diffraction. Crystallographic data: a = 14.1603 (4) Å, b = 3.68977 (9) Å, c = 10.9508 (3) Å, β = 82.226 (1)°, V = 566.90 (3) Å3, space group P21/n, Z = 4 for I; a = 14.652 (1) Å, b = 11.7275 (7) Å, c = 3.8098 (3) Å, β = 79.140 (6)°, V = 642.90 (8) Å3, space group C2/m, Z = 4 for II. The structural topologies of alkali metal complexes with barbituric acid and some its derivatives were compared. The thermal stability of complexes I and II in an air atmosphere was studied.  相似文献   

10.
In continuation of a systematic study of bis(citrate)germanates, we synthesized a number of heterometallic germanium(IV) and 3d metal complexes based in citric acid (H4Cit) with the molecular formula [M(H2O)6][Ge(HCit)2] · nH2O, where M = Fe, n = 4 (I); Co, n = 2 (II); Ni, n = 2 (III); Cu, n = 1 (IV); Zn, n = 3 (V). The complexes were characterized by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction analysis of compound I was performed. Crystals are monoclinic, a = 10.091(4) Å, b = 11.126(4) Å, c = 10.996(4) Å, β = 100.966(6)°, V = 1212.1(8) Å3, Z = 4, space group P21/n, R1 = 0.0561 for 2266 reflections with I > 2σ(I). Compound I is composed of centrosymmetric octahedral complexes-[Ge(HCit)2]2? anions and [Fe(H2O)6]2+ cations—and crystallization water molecules. Structural units in compound I are combined by a hydrogen bond system.  相似文献   

11.
The synthesis, vibrational spectra, and X-ray diffraction analysis results for 2-(diphenylphosphinylmethoxy) aniline, 2-[(C6H5)2P(O)OCH2]C6H4NH2(I), are described. The crystals are monoclinic: a = 18.4515(17) Å, b = 10.5421(12) Å, c = 17.897(2) Å, β = 104.479(8)°, V = 3370.7(6) Å3, Z = 8, space group P21/c, R = 0.0546 for 1770 reflections with I > 2σ(I). The unit cell contains two crystallographically independent molecules Ia and Ib joined by an N-H …O hydrogen bond between a hydrogen atom of the amino group of aniline in molecule Ia (Ib) and the phosphoryl oxygen atom of molecule Ib (Ia) (O…H 2.18 and 2.19 Å, N…O, 2.979(5) and 3.000(5) Å; NHO angle, 154° and 157°).  相似文献   

12.
Complex salts of the composition [Co(NH3)6](ReO4)3·2H2O (I), [Co(en)3](ReO4)3 (II), [Co(NH3)5H2O](ReO4)3·2H2O (III), and [Co(NH3)5Cl](ReO4)2·0.5H2O (IV) are obtained. Their crystal structures are determined by single crystal XRD. Crystallographic characteristics: (I) a = 9.9797(3) Å, b = 12.6994(3) Å, c = 14.7415(4) Å, β = 102.870(1)°, C2/c space group; (II) a = 8.0615(3) Å, b = 8.4483(4) Å c = 8.8267(4) Å, α = 61.923(2)°, β = 89.552(2)°, γ = 72.295(2)°, P1 space group; (III) a = 8.0086(4) Å, b = 12.9839(6) Å, c = 17.5122(7) Å, β=91.858(1)°, P21/n space group; (IV) a = 14.9446(3) Å, b = 14.6562(4) Å, c = 12.2434(4) Å, Cmc21 space group.  相似文献   

13.
Compounds with compositions [Rh(H2O)6]2(SO4)3·4H2O (I), (H3O)[Rh(H2O)6](SO4)2 (II), [Rh(H2O)5OH](SO4)·0.5H2O (III), and [Rh(H2O)6]2(SO4)·(H2SO4) x ·5H2O (IV) have been studied. The crystal structures of II, III, and IV were determined. All compounds crystallized in the monoclinic crystal system. Crystal data for II: a = 7.279(2) Å, b = 10.512(7) Å, c = 15.806(3) Å, β = 96.71(3)°, space group P21/n, Z = 2, d calc = 2.334 g/cm3; III: a = 20.433(4) Å, b = 7.820(2) c = 11.215(2) Å, β = 114.14(1)°, space group C2/c, Z = 8, d calc = 2.559 g/cm3; IV: a = 6.2250(4 Å), b = 27.0270(12) Å, c = 7.2674(5) Å, β = 97.04(3)°, space group P21/c, Z = 4, d calc = 2.143 g/cm3. The compounds were studied by IR spectroscopy and powder X-ray diffraction. All of the isolated crystalline phases are sparingly soluble in ethanol and well soluble in water.  相似文献   

14.
Double ionic complexes [M(C5H5NCOO)3(H2O)2][Cr(NCS)6] · nH2O, where M = Eu (I), n = 1.15; Dy (II), Er (III), n = 1.5; M = Yb (IV), n = 2, have been synthesized by the reaction between M(NO3)3, M = Eu, Dy, Er, Yb, K3[Cr(NCS)6], and nicotinic acid (C5H5NCOO) in an aqueous solution and studied by chemical analysis, IR spectroscopy, and X-ray diffraction. Crystals of complexes IIV are monoclinic, space group P21/n, Z = 4; a = 9.5358(2) Å, b = 25.4871(5) Å, c = 15.4303(4) Å, β = 105.513(1)°, V = 3613.6(1) Å3, ρcalcd = 1.799 g/cm3 for I, a = 9.5901(5) Å, b = 25.8599(15) Å, c = 15.6316(9) Å, β = 106.829(2)°, V = 3710.6(4) Å3, ρcalcd = 1.782 g/cm3 for II, a = 9.5640(3) Å, b = 25.8936(11) Å, c = 15.6498(7) Å, β = 106.895(2)°, V = 3708.3(3) Å3, ρcalcd = 1.791 g/cm3 for III, and a = 9.5049(2) Å, b = 25.6378(4) Å, c = 15.5120(3) Å, β = 106.934(1)°, V = 3616.1(1) Å3, ρcalcd = 1.864 g/cm3 for IV.  相似文献   

15.
Hexaamminecadmium hydrogen hexamolybdocobaltate(III) and hydrogen hexamolybdochromate(III) of compositions [Cd(NH3)6] · H[CoMo6O18(OH)6] · 6H2O (I) and [Cd(NH3)6] · H[CrMo6O18(OH)6] · 6H2O (II), respectively, were synthesized and studied by mass spectroscopy, thermo-gravimetry, X-ray powder diffraction, and IR spectroscopy. Crystals of I and II are monoclinic. For I: a = 10.79 Å, b = 3.70 Å, c = 11.95 Å, β = 91.05°, V = 470.12 Å3, ρcalc = 2.37 g/cm3, Z = 2; and for II: a = 10.80 Å, b = 3.68 Å, c = 11.97 Å, β = 91.07°, V = 468.98 Å3, ρcalc = 2.36 g/cm3, Z = 2.  相似文献   

16.
Two ethylenediamine derivatives—N-(2-ammoniumethyl)carbamate HN(COO?)CH2CH2N+H3 (I) and tetraacetylethylenediamine (H3CC(O))2NCH2CH2N(C(O)CH3)2 (II) (synthesized for the first time)—have been synthesized and characterized by X-ray crystallography. Compounds I and II are isolated as minor admixtures upon an attempt to synthesize ethylenediamine complexes of lanthanum and neodymium nitrates, respectively. The crystals of I and II are monoclinic: a = 7.778 Å, b = 8.060 Å, c = 7.568 Å, β = 95.73°, Z = 4, space group P21/c (I); a = 5.946, b = 10.255, c = 9.343 Å, β = 95.72°, Z = 2, space group P21/c (II). The bond lengths and bond angles lie within the corresponding standard values. Compounds I and II have different conformations of the N-C-C-N ethylenediamine moiety: gauche in I and trans in II, and the corresponding torsion angles are equal to 66.6° and 180°, respectively.  相似文献   

17.
The (DienH3)[AuCl4]3 · H2O (I) and (DienH3)2[AuCl4]Cl5 (II) compounds were obtained by the reaction of HAuCl4 with diethylenetriamine trihydrochloride (DienH3Cl3) in hydrochloric acid. The compounds were characterized by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. Crystals of I and II are monoclinic with space group P21/n. For I, a = 12.2314(3) Å, b = 14.6077(5) Å, c = 13.2680(5) Å, β = 106.7350(10)°, V = 2270.22(13) Å3, Z = 8. For II, a = 6.62990(10) Å, b = 17.9026(5) Å, c = 10.3661(3) Å, β = 101.9230(10)°, V = 1203.83(5) Å3, Z = 2. Both structures are ionic. The gold atoms in I and II have a 4 + 2 coordination environment. The Au-Cl bond lengths are within 2.276–2.294 Å, and the axial Au…Cl contacts are within 3.315–3.405 Å. The diethylenetriammonium cation in I and II has different conformations.  相似文献   

18.
Two new cobalt(III) and zinc(II) complexes, [Co(L1)2 (H2O)] · ClO4 (I) and [Ni(L2)2 (H2O)2] · 2ClO4 (II), where L1 is the deprotonated form of 5-methoxy-2-[(2-morpholin-4-ylethylimino)methyl]phenol, and L2 is the zwitterionic form of 2-[(2-isopropylaminoethylimino)methyl]-5-methoxyphenol, were synthesized and structurally characterized by elemental analyses, IR spectra, and single-crystal X-ray diffraction. The crystal of I is monoclinic: space group P21/c, a = 11.1512(4), b = 28.2424(11), c = 10.9655(4) Å, β = 95.746(2)°, V = 3436.1(2) Å3, Z = 4. The crystal of II is triclinic: space group P21/c, a = 8.1441(2), b = 10.4531(3), c = 10.8849(3) Å, α = 84.0240(10)°, β = 76.9800(10)°, γ = 74.2280(10)°, V = 867.92(4) Å3, Z = 1. Complex I consists of a mononuclear cobalt(III) complex cation and a perchlorate anion. Complex II consists of a crystallographic centrosymmetric mononuclear nickel(II) complex cation and two perchlorate anions. Each metal atom in the complexes is in an octahedral coordination.  相似文献   

19.
The complex (HDam)2[Ge2(μ-L)2(OH)2] · 4H2O (I) (H4L is tartaric acid, Dam is diantipyrylmethane) was synthesized for the first time. The individual character and composition of I was established by elemental analysis and X-ray diffraction. The thermal stability of I was studied. The coordination sites of H4L in the germanium complex were determined by IR spectroscopy. The structure of I was determined by X-ray crystallography. The crystals of I are triclinic: a = 9.3098(10) Å, b = 9.8088(10) Å, c = 17.6869(10) Å, α = 84.009(10)°, β = 77.926(10)°, γ = 67.088(5)°, V = 1454.3(2) Å3, Z = 2, space group P \(\bar 1\), R = 0.0628 for 6343 reflections with I > 2σ(I). The compound is composed of the complex anions [Ge2(μ-L)2(OH)2]2?, the HDam+ cations, and crystal water molecules. In the dimeric anion, the metal atoms are bound to two completely deprotonated ligands L4?. The latter are coordinated to the metal through the carboxyl (av. Ge-O, 1.911(6) Å) and hydroxyl (av. Ge-O, 1.768(6) Å) oxygen atoms. The coordination of each Ge atom is completed to trigonalbipyramidal by the O atom of the hydroxy ligand in the axial position (av. Ge-O, 1.748(7) Å). Both L4? ligands are D isomers. In the crystal, the complex anions and crystal water molecules are combined by a system of hydrogen bonds.  相似文献   

20.
The tetranuclear cluster rhenium complexes Cs3H[Re4Q4Cl12] · 3.33H2O (Q = Te (I) and Se (II)) with the Cl atoms as terminal ligands were obtained and structurally characterized. The structures of complexes I and II were determined by X-ray diffraction analysis. Their isostructural crystals are monoclinic; space group C2, Z = 6; a = 26.403(8) Å, b = 16.495(5) Å, c = 11.744(3) Å, β = 91.25(2)°, V = 5113(2) Å3 (I); a = 26.573(3) Å, b = 16.461(3) Å, c = 11.726(2) Å, β = 91.381(4)°, V = 5127.6(14) Å3 (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号