首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new physical approach for the design of mid-IR lasers operating at 3–5 μm based on type II heterojunctions with effective electron–hole confinement owing to a large asymmetric band-offset at the interface (ΔEC>0.6 eV and ΔEV>0.35 eV) has been proposed. The creation of high barriers for carriers leads to their strong accumulation in the active region and increases the quantum emission efficiency of the spatially separated electrons and holes across the heteroboundary due to a tunnel-injection radiative recombination mechanism within the device. An extremely weak reduction of the electroluminescence (EL) intensity for the interface tunnelling-assisted emission band with increasing temperature from 77 to 300 K was observed. This coherent emission (λ=3.146 μm at 77 K) was totally polarised in the plane perpendicular to the p–n heterojunction plane, which means the laser emission was TM-polarised due to tunnelling-assisted light-hole–electron recombination across the interface.  相似文献   

2.
An As2S3 fiber coupled to an InGaAsSb photodiode was used to record the radiation distribution over the emitting surface in InGaAsSb episide-down-bonded negative luminescence devices (λ=3.9 μm). Emission spectra were recorded under forward and reverse bias and both were modulated by a Fabry–Perot resonator formed by the anode contact and emitting InAs surface in 45-μm thick diodes. The results show that the current/emission distribution crowds in the vicinity of the contact under forward bias, while a uniform current/emission distribution over the emitting surface is seen under reverse bias.  相似文献   

3.
In this work the influence of the interface defect density on the a-Si:H/a-SiNχ:H multilayers is investigated through photoconductivity, ambipolar diffusion length, dark conductivity activation energy, and defect density measurements. The results show a strong asymmetric dependence of (μτ)e and μτ)h on the interface defect density: As the thickness of the well decreases, (μτ)e decreases strongly, whereas (μτ)h remains constant. The asymmetry is consistently explained by a simple model, in which recombination of free carriers occurs via midgap defect states (in the bulk and at interfaces) and via trapping of electrons (holes) into their respective deep tail states below (above) their respective demarcation levels. Since the samples are slightly n-type and due to the asymmetric density-of-state distribution we can show analytically that (μτ)h is indeed insensitive to the midgap defect density. Finally, when fitting the measured mobility-lifetime products to an exponentially decaying defect density profile we can conclude that the interface region is about 5 Åwide.  相似文献   

4.
A detailed study of some physical properties of pure PMMA (polymethyl methacrylate) film and MMA/Ani (methyl methacrylate/aniline) films is presented. Films of thicknesses ranged from 0.04 to 0.72 mm for MMA/Ani were prepared while it is 0.68 mm for PMMA. The structure of the sample is analyzed by X-ray diffraction technique and is found to be amorphous (PMMA) and partially crystalline (MMA/Ani). Ultra violet–visible electronic absorption spectra measurements were analyzed to obtain some important parameters such as molar extrication coefficient, oscillator strength, dipole strength and having good thermal stability (Td >300 °C) was also reported. TGA studies revealed that the thermal stability of polymethyl methacrylate, prepared by radiation polymerization of methyl methacrylate, improved after copolymerization with aniline. Also, optical behavior of film samples was analyzed by obtaining transmission spectra, in the wavelength range of 200–1100 nm. It was found that all studied samples lead to the appearance of a second edge at lower photon energy due to the formation of the induced energy states. From the intensity of absorption interband transitions (B and Q) which are assigned as type ππ* for both PMMA and MMA/Ani films, the energy gaps Eg1 and Eg2 were calculated respectively. The optical conductivity (σ) was determined and it was found that with the increase of thicknesses optical energy gap decreases monotonically and the refractive index increases.  相似文献   

5.
Thin films of amorphous Se100−xSbx (x=5,10 and 20 at%) system are deposited on a silicon substrate at room temperature (300 K) by thermal evaporation technique. The optical constant such as refractive index (n) has been determined by a method based on the envelope curves of the optical transmission spectrum at normal incidence by a Swanpoel method. The oscillator energy (Eo), dispersion energy (Ed) and other parameters have been determined by the Wemple–DiDomenico method. The absorption coefficient (α) has been determined from the reflectivity and transmitivity spectrum in the range 300–2500 nm. The optical-absorption data indicate that the absorption mechanism is a non-direct transition. We found that the optical band gap, Egopt, decreases from 1.66±0.01 to 1.35±0.01 eV with increase Sb content.  相似文献   

6.
This study addresses the optimization of rf magnetron-sputtered hydrogenated ZnO:Al (HAZO) films as front contacts in microcrystalline silicon solar cells. The front contact of a solar cell has to be highly conductive and highly transparent to visible and infrared radiation. Furthermore, it has to scatter the incident light efficiently in order for the light to be effectively trapped in the underlying silicon layers. In this research, HAZO films were rf-magnetron-sputtered on glass substrates from a ceramic (98 wt% ZnO, 2 wt% Al2O3) target. Various compositions of AZO films on glass substrates were prepared by changing the H2/(Ar + H2) ratio of the sputtering gas. The resulting smooth films exhibited high transparencies (T  85% for visible light including all reflection losses) and excellent electrical properties (ρ = 2.7 × 10−4 Ω · cm). Depending on their structural properties, these films developed different surface textures upon post-deposition etching using diluted hydrochloric acid. The light-scattering properties of these films could be controlled simply by varying the etching time. Moreover, the electrical properties of the films were not affected by the etching process. Therefore, within certain limits, it is possible to optimize the electro-optical and light-scattering properties separately. The microcrystalline silicon (μc-Si:H)-based p–i–n solar cells prepared using these new texture-etched AZO:H substrates showed high quantum efficiencies in the long wavelength range, thereby demonstrating effective light trapping. Using the optimum AZO:H thin-film textured surface, we achieved a p–i–n μc-Si solar cell efficiency of 7.78%.  相似文献   

7.
We report measurements of electrical resistivity (ρ), Hall coefficient (RH), magnetization (M) and specific heat (Cp(T)) of high-quality icosahedral Al70.4Pd20.8Mn8.8 phases with different thermal treatment. An improvement in the quasi-crystallinity upon the annealing treatment caused a drastic increase in ρ up to 7000 μΩ cm accompanied by a very small electronic specific heat coefficient γ. The low temperature ρ(T) data has been analyzed in terms of weak localization and electron–electron interaction effects. The Hall resistivity (ρH) is found to be strongly temperature-dependent and varies linearly with the magnetization (M) for the same field and temperature. Magnetization measurement reveals that more conductive samples are more magnetic and vice versa. Magnetic susceptibility (χ) data of all the annealed samples agrees with the Curie–Weiss-like behavior implying the existence of localized moments. The negative Curie–Weiss temperature (θ) indicates strong antiferromagnetic coupling between individual Mn atoms. The magnetic Mn concentration is found to be small, ranging from 1.73×10-4 for the less magnetic sample studied up to 3×10-3 for the more magnetic one. The small electronic specific heat coefficient obtained for all the samples suggests a significant reduction in the electronic density of states (DOS) at the Fermi level (EF) upon thermal annealing treatment.  相似文献   

8.
The cross-sections for formation of isomeric pair, 75Gem(σm) and 75Geg(σg), through 76Ge(n, 2n), 75As(n, p) and 78Se(n, α) reactions were measured at 13.73 MeV, 14.42 MeV and 14.77 MeV neutrons and also estimated using EMPIRE-II and TALYS codes over neutron energies from near threshold to 20 MeV. For each (n, 2n), (n, p) and (n, α) reaction, the cross-section initially increases with neutron energy, but starts decreasing as the neutron energy exceeds the respective threshold of (n, 3n), (n, pn) and (n, αn) reactions. The higher values of σm relative to σg reveal that the transitions of the excited 75Ge from higher energy levels to metastable state (7+/2) are favored as compared to unstable ground state (1/2). The present values of cross sections for formation of 75Gem,g through (n, 2n) and (n, α) reactions are lower, and that of (n, p) reaction are higher compared to most of the corresponding literature cross-sections.  相似文献   

9.
The optical transmission spectra of amorphous (a-) Se1−xInx films, with x = 0.0, 0.05, 0.18 and 0.35, that prepared by thermal evaporation from their corresponding bulk ingots, are recorded over the spectral region of 500–2500 nm. A simple straight forward procedure proposed by Swanepeol has been applied to determine the two components of the complex refractive index (). The dispersion of is examined in terms of the Wemple and DiDomenico model and is discussed in terms of In-content. An estimation of various optical parameters such as, the optical energy gap (Eg = 1.96–1.33 eV), single oscillator energy (Eo = 3.95–3.16 eV), oscillator dispersion energy (Ed = 22.6–31.6 eV), lattice oscillator strength (El = 0.38–0.61 eV) and wavelength at zero material dispersion (λc = 2.0569–2.0879 μm) have been given and discussed in relation to the coordination number, hydrostatic density and formed chemical bonds that are introduced in the network of a-Se with the introduction of up to 35 at.% In.  相似文献   

10.
Two low cost-infrared sources emitting above 4 μm wavelength are described: (i) Double heterostructure or quantum well EuSe/PbSe/Pb1−xEuxSe edge emitting lasers on silicon substrates show peak powers up to 200 mW and differential quantum efficiencies up to 20%. They operate up to 250 K when pumped with 870 nm laser diodes (with peak powers of 5.5 W). (ii) A “wavelength transformer”, a EuSe/PbSe/Pb1−xEuxSe active resonant cavity with epitaxial bottom and top mirror on a Si(1 1 1) substrate transforms the incoming 870 nm pump radiation into e.g. 4.2 μm wavelength. The device operates at room temperature, and the width and value of the emission wavelength can be tuned by design.  相似文献   

11.
Highly strained quantum cascade laser (QCL) and quantum well infrared photodetector (QWIPs) structures based on InxGa(1−x)As−InyAl(1−y)As (x>0.8,y<0.3) layers have been grown by molecular beam epitaxy. Conditions of exact stoichiometric growth were used at a temperature of 420°C to produce structures that are suitable for both emission and detection in the 2–5 μm mid-infrared regime. High structural integrity, as assessed by double crystal X-ray diffraction, room temperature photoluminescence and electrical characteristics were observed. Strong room temperature intersubband absorption in highly tensile strained and strain-compensated In0.84Ga0.16As/AlAs/In0.52Al0.48As double barrier quantum wells grown on InP substrates is demonstrated. Γ–Γ intersubband transitions have been observed across a wide range of the mid-infrared spectrum (2–7 μm) in three structures of differing In0.84Ga0.16As well width (30, 45, and 80 Å). We demonstrate short-wavelength IR, intersubband operation in both detection and emission for application in QC and QWIP structures. By pushing the InGaAs–InAlAs system to its ultimate limit, we have obtained the highest band offsets that are theoretically possible in this system both for the Γ–Γ bands and the Γ–X bands, thereby opening up the way for both high power and high efficiency coupled with short-wavelength operation at room temperature. The versatility of this material system and technique in covering a wide range of the infrared spectrum is thus demonstrated.  相似文献   

12.
Intersubband transitions in quantum well have extremely large oscillator strengths and induce strong nonlinear effects in structures where inversion symmetry is broken, realized by growing AlGaAs quantum wells with asymmetrical A1 gradients. These compositionally asymmetrical multiquantum wells may thus be viewed as giant “quasimolecules” optimized for optimal nonlinearities in the mid infrared. Optical rectification as well as second harmonic generation have been measured in those structures using a continuous CO2 laser. At 10.6 μm the nonlinear coefficients are more than 3 orders of magnitude higher in these samples than for bulk GaAs (i.e. χ0(2) = 5.3 × 10−6m/V, χ2ω(2) = 7.2 × 10−7 m/V) and are in good agreement with theoretical predictions. We present more complex “pseudo-molecules” involving weakly coupled quantum wells. The optical rectification effects in these devices are so large χ0(2) = 1.6 × 10−3 m/V) that application to infrared detection may be envisioned.  相似文献   

13.
We investigate modification of Kolmogorov wave turbulence in QCD calculating gluon spectra as functions of time in the presence of a low energy source which feeds in energy density in the infrared region at a time-dependent rate. Then considering the picture of saturation constraints as has been constructed in the “bottom-up” thermalization approach we revisit that picture for RHIC center-mass energy, W=130 GeV, and also extend it to LHC center-mass energy, W=5500 GeV, thus for two cases having an opportunity to calculate the equilibration time, τeq|therm, of the gluon system produced in a central heavy ion collision at mid-rapidity region. Thereby, at RHIC and LHC energies we can match the equilibration time, obtained from the late stage gluon spectrum of the modified Kolmogorov wave turbulence, onto that of the “bottom-up” thermalization and other evolutional approaches as well. In addition, from the revised “bottom-up” approach we find the gluon liberation coefficient to be on the average, ε0.81–1.06 at RHIC and ε0.50–0.56 at LHC. We also present other phenomenological estimates of τtherm which, at QCD realistic couplings, yield 0.45–0.65 fmτtherm0.97–2.72 fm at RHIC and 0.31–0.40 fmτtherm0.86–2.04 fm at LHC. We show that the second upper-bounds of τtherm in both cases are due to the late stage gluon spectrum of the original Kolmogorov wave turbulence in QCD, previously deduced with a low energy source which feeds in energy density at a constant rate. On the other hand, the lower-bounds and first upper-bounds of τtherm are due to the late stage gluon spectrum of the modified QCD wave turbulence, deduced here at the specific time-dependent rate. In the latter case, at certain conditions, taking also into account both very small and realistic couplings we give estimates: 0.65 fmτtherm1.29 fm at RHIC and 0.52 fmτtherm1.16 fm at LHC, as well as at realistic couplings we find 0.53<τtherm<0.7 fm at RHIC and 0.41<τtherm<0.65 fm at LHC.  相似文献   

14.
The quantity G = (α/π) Σa,μνGμνaGμνa is extracted from Monte Carlo data for SU(2) lattice gauge theory We find G = 0.015 ± 0.002 GeV4.  相似文献   

15.
Detailed Raman and photoluminescence (PL) measurements are reported for Si/Si1−xGex nanostructures grown by molecular beam epitaxy under near Stranski–Krastanov (S–K) growth mode conditions. In samples with x ranging from 0.096 to 0.53, we observe that an increase in the Raman signal related to Ge–Ge vibrations correlates with (i) a red shift in the PL peak position, (ii) an increase in the activation energy of PL thermal quenching, and (iii) an increase in the PL quantum efficiency. The results indicate that for x>0.5 Ge atoms form nanometer size clusters with a nearly pure Ge core surrounded by a SiGe shell. Time-resolved PL measurements reveal a stretched-exponential long-lived PL component that is associated with compositional and dimensional fluctuations in the SiGe dots.  相似文献   

16.
We report on the observation of 1 3PJb) production in the reaction ′→γχb→γγ→γγ(e+e or μ+μ). The data were recorded with the nonmagnetic CUSB detector at the Cornell Electron Storage Ring, CESR. We observe 124 γγ events with either an electron or muon pair in the final state. In the γγ correlation plot about 40% of the events cluster around (120, 430) MeV.  相似文献   

17.
0–3 cement-based piezoelectric composites were fabricated using sulphoaluminate cement and piezoelectric ceramic [0.08Pb(Li1/4Nb3/4)O3 · 0.47PbTiO3 · 0.45PbZrO3] [P(LN)ZT] as raw materials by compressing technique. The influences of carbon black content on the piezoelectric and dielectric properties, electric conductivity and impedance were investigated. The results indicate that the piezoelectric strain constant d33 and piezoelectric voltage constant g33 of the composites increase gradually with a suitable carbon black addition. When the carbon black content is 0.3 wt%, both of the piezoelectric strain constant d33 and piezoelectric voltage constant g33 of the composite exist the maximum value, which are 17.45 pC N−1 and 36.3 mV m N−1, respectively. As the carbon black content increases, the dielectric constant εr, dielectric loss tanδ and electric conductivity σ of the composites all increase, while the impedance decreases. In the frequency range tested, the more the carbon black content, the higher the εr value. The planar electromechanical coupling coefficient Kp, the thickness electromechanical coupling coefficient Kt and the mechanical quality factor Qm are almost unaffected by the carbon black content.  相似文献   

18.
Two series of mixed copper ferrites, Cu1+x Gex Fe2−2x O4 and Cu1+x Six Fe2−2x O4, have been analogously investigated for x=0.0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. The two systems were prepared using the standard ceramic techniques. X-ray diffraction analysis indicates that both systems formed in a single phase cubic spinel structure. The lattice parameter has a constant value (0.838 nm±0.001) for the two series. The grain diameter was estimated from the scanning electron microscope micrographs for the two series. Some magnetic properties were measured at room temperature. The magnetization M was measured in the range of magnetizing field up to 5500 Am−1. The relative permeability (μr) was calculated from the B–H relation. The BH loops were measured at constant magnetizing current (I=2.5 A which is equivalent to 900 Am−1). Also, the hystersis area and the magnetic parameters Br, Bs, mR (Br/Bs) and apparent energy loss (E) were estimated from the BH loops; μr, Br, Bs and E are composition dependent.  相似文献   

19.
This study describes a direct measurement of spectroscopic g-factors of photo-generated carriers in InP/ZnS and HgTe/HgxCd1−xTe(S) core–shell nanocrystals. The g-factor of trapped electrons and their spin-lattice versus radiative relaxation ratio (T1/τ) were measured by the use of continuous-wave and time-resolved optically detected magnetic resonance (ODMR) spectroscopy. The g-factors of excitons and donor–hole pairs were derived by the use of field-induced circular-polarized photoluminescence (CP-PL) spectroscopy. The combined information enabled to determine the g-factors of the individual band-edge electrons and holes. The results suggested an increase of the g-factor of the exciton and conduction electron with a decrease of the nanocrystal size.  相似文献   

20.
The changes in the dielectric properties and temperature dependence of the d.c. conductivity of α-exposed poly allyl diglycol carbonate (PADC) have been studied. On α-irradiation the dielectric constant (′) as a function of frequency has been found to decrease significantly. The temperature dependence of resistivity in pristine and γ-irradiated samples is of the form ρ(T)=ρ exp(T0/T) which can be attributed to conduction of thermally generated carriers. In case of (γ+α) irradiated samples the temperature dependence of resistivity is of the form ρ(T)=ρ exp(T0/T)1/2 which is due to one-dimensional hopping of carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号