首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An inductively coupled plasma isotope dilution mass spectrometric (ICP-IDMS) method was developed as a suitable method – with respect to its sensitivity, precision, accuracy, and time-consumption – for the analysis of toxic heavy metal traces (Pb, Cd, Cr, and Hg) in polyolefins. Results for Pb, Cd, and Cr were compared with those obtained by thermal ionization isotope dilution mass spectrometry (TI-IDMS), which was used as a reference method. Because of its high first ionization potential and its high volatility mercury could not be determined by TI-IDMS. A multi-element spike solution, containing isotopically enriched 206Pb, 116Cd, 53Cr, and 201Hg, was used for the isotope dilution step. Decomposition of the polyolefin samples was carried out with concentrated HNO3 at temperatures of about 300?°C in a high pressure asher (HPA). This procedure decomposes polyolefins completely and allows isotopic equilibration between sample and spike isotopes. Detection limits of 16 ng/g, 5 ng/g, 164 ng/g, and 9 ng/g were obtained for Pb, Cd, Cr, and Hg by ICP-IDMS using only sample weights of 0.25 g. In different commercially available polyethylene samples heavy metal concentrations in the range of < 5 ng/g to 4 × 103 ng/g were analyzed. Both mass spectrometric methods were applied within the EU project “Polymeric Elemental Reference Material (PERM)” for the certification of two polyethylene reference materials. The ICP-IDMS results agreed very well with those of TI-IDMS which demonstrates the accuracy of the ICP-IDMS method also suitable for routine analyses.  相似文献   

2.
An inductively coupled plasma isotope dilution mass spectrometric (ICP-IDMS) method was developed as a suitable method - with respect to its sensitivity, precision, accuracy, and time-consumption - for the analysis of toxic heavy metal traces (Pb, Cd, Cr, and Hg) in polyolefins. Results for Pb, Cd, and Cr were compared with those obtained by thermal ionization isotope dilution mass spectrometry (TI-IDMS), which was used as a reference method. Because of its high first ionization potential and its high volatility mercury could not be determined by TI-IDMS. A multi-element spike solution, containing isotopically enriched 206Pb, 116Cd, 53Cr, and 201Hg, was used for the isotope dilution step. Decomposition of the polyolefin samples was carried out with concentrated HNO3 at temperatures of about 300 degrees C in a high pressure asher (HPA). This procedure decomposes polyolefins completely and allows isotopic equilibration between sample and spike isotopes. Detection limits of 16 ng/g, 5 ng/g, 164 ng/g, and 9 ng/g were obtained for Pb, Cd, Cr, and Hg by ICP-IDMS using only sample weights of 0.25 g. In different commercially available polyethylene samples heavy metal concentrations in the range of < 5 ng/g to 4 x 10(3) ng/g were analyzed. Both mass spectrometric methods were applied within the EU project "Polymeric Elemental Reference Material (PERM)" for the certification of two polyethylene reference materials. The ICP-IDMS results agreed very well with those of TI-IDMS which demonstrates the accuracy of the ICP-IDMS method also suitable for routine analyses.  相似文献   

3.
An isotope dilution mass spectrometric (IDMS) method with the thermal ionization (TI) technique has been developed for the determination of trace impurities of Cr, Fe, Ni, Cu, Zn, Ag, Cd, Tl, Pb, Th, and U in high-purity HF (50% by weight) used in the semiconductor industry. The evaporation step of the HF solution was carried out in an apparatus which did not significantly contribute to contaminations of the heavy metals to be analysed. This apparatus allowed fast evaporation of the HF solution of up to 200 ml/h and therefore also a fast trace heavy metal/matrix separation was carried out. The evaporation step was also used in connection with inductively coupled plasma mass spectrometry (ICP-MS) when applying the isotope dilution technique and an external calibration for quantification, respectively. The detection limits for TI-IDMS were (in pg/g): Cr=30, Fe=400, Ni=70, Cu=20, Zn=1100, Ag=70, Cd=10, Tl=1, Pb=16, Th=3, and U=1. With ICP-MS in combination with the evaporation step, detection limits of less than 50 pg/g have been achieved for Cr, Ni, and Zn and of <5 pg/g for the other elements except Fe, which could not be determined in concentrations less than 100 ng/g. On the other hand, the detection limits were much higher when the HF matrix was not removed before measuring by ICP-MS. A comparison of the different ICP-MS methods (isotope dilution technique and external calibration for both HF evaporated samples and those with HF matrix) with the results of TI-IDMS has been carried out. An excellent agreement was achieved between the results of TI-IDMS and the two ICP-MS methods using the HF evaporation step, whereas the ICP-MS techniques without HF evaporation essentially deviated from these results. Fe was the only trace element of all investigated heavy metals which could only be analysed by TI-IDMS in high purity HF in a concentration of about 3 ng/g. Although ICP-MS with isotope dilution and external calibration resulted in comparable analytical data, the ICP-IDMS method has some practical advantages such as time-saving and more reliable results.  相似文献   

4.
Different sample treatment procedures were combined with inductively coupled plasma mass spectrometry (ICP-MS) and negative thermal ionisation mass spectrometry (NTI-MS) for the determination of ruthenium traces in photographic emulsions. Dissolution of the samples in concentrated ammonia solution was used in connection with ICP-MS by external calibration, which has the advantage of a simple sample preparation technique but introduces high amounts of the silver matrix into the mass spectrometer. On the other hand, isotope dilution mass spectrometry (IDMS) with an enriched 99Ru spike solution was applied for ICP-MS and NTI-MS measurements, respectively, in connection with a significant reduction of the matrix by AgCl precipitation. In these cases loss of ruthenium by the AgCl precipitate has no effect on the analytical result. The results of the different methods agreed usually well analysing ruthenium traces in the range of 0.1–10 μg per gram emulsion. The detection limits obtained were 4 ng/g for ICP-IDMS, 20 ng/g for NTI-IDMS, and 15 ng/g for ICP-MS with external calibration. Differences in the results between the different methods could mainly be attributed to sample inhomogeneities. ICP-IDMS with silver matrix reduction by AgCl precipitation is recommended as a routine method, NTI-IDMS with the corresponding sample treatment as a calibration method.  相似文献   

5.
Three CRMs of plant origin (SRM 1515 Apple Leaves, SRM 1570a Trace Elements in Spinach Leaves, and SRM 1575 Pine Needles) were used for analytical quality assurance of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, and Pb determination by ICP-MS. The samples were decomposed using microwave assisted pressurized digestion by HNO3 and HNO3 + H2O2 mixture and temperature programmed dry ashing. Concentrations of elements in samples were evaluated by external calibration. All samples, blanks, and standards were spiked to 100 μg/L concentration of In and Bi as internal standards. During the measurement, signals of 52Cr, 53Cr, 54Fe, 55Mn, 59Co, 60Ni, 62Ni, 63Cu, 65Cu, 66Zn, 95Mo, 111Cd, 112Cd, 115In, 206Pb, 207Pb, 208Pb and 209Bi were monitored. Results of Pb, Cd, Cu, Zn, Mo and Co determination were in good agreement with certified values. In order to obtain accurate results for As at low levels, it was necessary to mathematically correct the analytical signal. This correction effectively eliminates the influence of interfering ArCl+ ions. For Cr analysis it is advisable to use as powerful oxidizing conditions during sample decomposition as possible.  相似文献   

6.
This paper presents a method whereby trace elements in NH4Cl-NH3 medium are adsorbed on activated carbon in a micro-flow-injection (FI) semi-online sorbent extraction preconcentration system and then determined by graphite furnace atomic absorption spectrometry (GFAAS). The analytical performance of the proposed method for determining Cd, Mn and Pb was studied. A microcolumn packed with activated carbon was used as a preconcentration column (PCC). The metals to be determined were preconcentrated onto the column for 60 s and then rinsed with 0.02% (v/v) HNO3 and eluted with 30 μl of 2 mol l−1 HNO3. Compared with the direct injection of 30 μl of aqueous sample solution, enrichment factor of 32, 26, and 21 and detection limits (3σ) of 0.4, 4.7, and 7.5 ng l−1 for Cd, Mn and Pb, respectively, were obtained with 60 s sample loading at 3.0 ml min−1 for sorbent extraction, 30 μl of eluate injection, and peak area measurement. The precisions (RSD, n=6) were 2.8% at the 0.05 μg l−1 level for Cd, 3.0% at the 0.3 μg l−1 level for Mn, and 3.1% at the 0.5 μg l−1 level for Pb. The experimental results indicate that the procedure can eliminate the fundamental interferences caused by alkali and alkaline earth metals and the application of it to the determination of Cd, Mn and Pb in some water samples is successful.  相似文献   

7.
Inductively coupled plasma optical emission spectrometry (ICP OES) was used to determine Mo, Cr, V and Ti, in diesel and in used fuel oil. Samples were introduced into the ICP as emulsions to reduce interferences and allow the use of inorganic standards for quantification. A comparative study between one Triton X-100 emulsion and one detergentless emulsion was made. A 23 factorial design was applied to elucidate and establish the relationship between three experimental variables: presence of HNO3, amount of diesel fuel oil (between 5 and 25%) and the presence or O2 into the Ar plasma gas flow rate. Results indicated that best performance were achieved using 10% sample (w/w) together with concentrated HNO3 (0.5 mL) and using O2 as auxiliary gas (0.047 L min−1). The use of O2 minimized both carbon deposits at the injector tip and plasma background. The addition of HNO3 resulted in good correlation between inorganic standards used for calibration, and metallo-organic standards used for sample enrichment. Analyte enriched diesel and SRM 1634b were analyzed using the optimized conditions. Recoveries from 90.1 to 106.5% were achieved, with better results for detergent emulsions which enabled limits of detection at the ng g−1 range for Mo, Cr, V and Ti and at smaller background.  相似文献   

8.
A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l−1 HNO3 and in 1+1 v/v diluted wine using mixtures of Pd(NO3)2+Mg(NO3)2 and NH4H2PO4+Mg(NO3)2 as chemical modifiers. With 5 μg Pd+3 μg Mg as the modifiers and a two-step pyrolysis (10 s at 400°C and 10 s at 600°C), the formation of carbonaceous residues inside the atomizer was avoided. For 20 μl of sample (wine+0.056 mol l−1 HNO3, 1+1, v/v) dispensed into the graphite tube, analytical curves in the 0.10–1.0 μg l−1 Cd and 5.0–50 μg l−1 Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 μg l−1 for Cd, 0.8 μg l−1 for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 μg l−1 and for Pb at 500 μg l−1. The relative standard deviations (n=12) were typically <8% for Cd and <6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Pb was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level.  相似文献   

9.
The development and implementation of a method for the certification of cadmium in blood samples at low ng g–1 and sub ng g–1 levels is described. The analytical procedure is based on inductively coupled plasma isotope dilution mass spectrometry (ICP–IDMS) applied as a primary method of measurement. Two different sample digestion methods, an optimized microwave digestion procedure using HNO3 and H2O2 as oxidizing agents and a high-pressure asher digestion procedure, were developed and compared. The very high salt content of the digests and the high molybdenum content, which can cause oxide-based interferences with the Cd isotopes, were reduced by a chromatographic matrix separation step using an anion-exchange resin. All isotope ratio measurements were performed by a quadrupole ICP–MS equipped with an ultrasonic nebulizer with membrane desolvator. This sample introduction set-up was used to increase sensitivity and minimize the formation of oxides (less MoO+ interference with the Cd isotopes). Because of the very low Cd concentrations in the samples and the resulting need to minimize the procedural blank as much as possible, all sample-processing steps were performed in a clean room environment. Detection limits of 0.005 ng g–1 Cd were achieved using sample weights of 2.7 g. The method described was used to re-certify the cadmium content of three different blood reference materials from the Community Bureau of Reference (BCR) of the European Commission (BCR-194, BCR-195, BCR-196). Cadmium concentrations ranged between ~0.2 ng g–1 and ~12 ng g–1. For these materials, SI-traceable certified values including total uncertainty budgets according to ISO and Eurachem guidelines were established.  相似文献   

10.
Two digestion procedures have been tested on nut samples for application in the determination of essential (Cr, Cu, Fe, Mg, Mn, Zn) and non-essential (Al, Ba, Cd, Pb) elements by inductively coupled plasma-optical emission spectrometry (ICP-OES). These included wet digestions with HNO3/H2SO4 and HNO3/H2SO4/H2O2. The later one is recommended for better analytes recoveries (relative error < 11%). Two calibrations (aqueous standard and standard addition) procedures were studied and proved that standard addition was preferable for all analytes. Experimental designs for seven factors (HNO3, H2SO4 and H2O2 volumes, digestion time, pre-digestion time, temperature of the hot plate and sample weight) were used for optimization of sample digestion procedures. For this purpose Plackett-Burman fractional factorial design, which involve eight experiments was adopted. The factors HNO3 and H2O2 volume, and the digestion time were found to be the most important parameters. The instrumental conditions were also optimized (using peanut matrix rather than aqueous standard solutions) considering radio-frequency (rf) incident power, nebulizer argon gas flow rate and sample uptake flow rate. The analytical performance, such as limits of detection (LOD < 0.74 μg g−1), precision of the overall procedures (relative standard deviation between 2.0 and 8.2%) and accuracy (relative errors between 0.4 and 11%) were assessed statistically to evaluate the developed analytical procedures. The good agreement between measured and certified values for all analytes (relative error <11%) with respect to IAEA-331 (spinach leaves) and IAEA-359 (cabbage) indicates that the developed analytical method is well suited for further studies on the fate of major elements in nuts and possibly similar matrices.  相似文献   

11.
A natural silver foil was bombarded by 30 MeV α-particles which produced 111In, 109Cd and 106mAg in the target matrix. 111In and 109Cd were separated from the Ag target matrix employing ion-exchange chromatography and liquid–liquid extraction (LLX). In the chromatographic separation, the active solution containing the NCA products were adsorbed in the column containing Dowex 50 and were eluted with HNO3. Bulk silver and 109Cd were sequentially eluted with 1 M HNO3. After complete elution of 109Cd and the bulk, 111In was eluted with 1.5 M HNO3. In the LLX, the NCA 111In was extracted to 1 % HDEHP (di-2(ethylhexyl)phosphoric acid) from 10?2 M HNO3 solution, leaving cadmium and bulk silver quantitatively in the aqueous phase. The NCA 109Cd was separated from the bulk Ag by precipitating Ag as AgCl. NCA 111In was stripped back quantitatively from HDEHP phase using 8 M HNO3.  相似文献   

12.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized by glutaric dihydrazide (GDH) and characterized with FT-IR technique. This new sorbent was used for enrichment and preconcentration of Co(II), Cd(II), Pb(II), and Pd(II) ions. The adsorption was achieved quantitatively on MWCNTs at pH 4.0, and then the retained metal ions on the adsorbent were eluted with 1.5 mol L?1 HNO3. The effects of analytical parameters including pH of the solution, eluent type, sample volume, and matrix ions were investigated for optimization of the presented procedure. The adsorption capacity of the adsorbent at optimum conditions was found to be 33.6, 29.2, 22.1, and 36.0 mg g?1 for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The LOD values of the method were 0.16, 0.19, 0.17, and 0.12 ng mL?1 (3Sb, n = 10) for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The RSDs values of the method were 0.75, 0.85, 1.16, and 1.30 ng mL?1 for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The method was applied for the determination of analytes in soil, well water, and wastewater samples with satisfactory results.  相似文献   

13.
A simple and reliable multi-element procedure for determination of essential (Cr, Cu, Fe, Mg, Mn, Zn) and toxic (Al, Cd, Pb) elements in legumes by inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed. In this contribution, four different digestion procedures were thoroughly investigated and accurately evaluated with respect to their affect on the analysis of legumes. These included wet digestion with HNO3/H2SO4 and HNO3/H2SO4/H2O2, and dry ashing with Mg(NO3)2 and Mg(NO3)2/HNO3. Two calibrations (aqueous standard and standard addition) procedures were studied, and proved that standard addition was preferable for all analytes. ICP-OES operating parameters, such as radio-frequency (RF) incident power, sample uptake flow rate and nebulizer argon gas flow rate were optimized. The precision as repeatability, expressed as relative standard deviation (R.S.D.) for aqueous standard containing 250 μg l−1 of each analyte was in the range1.5-8.0%. The accuracy, expressed as relative error was generally varied in the range of 0.5-10% for all analytes, while the quantification limits were lower than 2.5 μg g−1. Although, acceptable results were obtained from all developed procedures, wet digestion method with HNO3/H2SO4/H2O2 is recommended for better recovery. The good agreement between measured and certified concentrations with respect to IAEA-331 and IAEA-359 (CRM's supplied by IAEA, International Atomic Energy Agency) indicates that the developed analytical method is well suited for determination of toxic and nutrient elements in legumes and possibly similar matrices.  相似文献   

14.
A multi-element graphite furnace atomic absorption spectrometry (GFAAS) method was elaborated and applied for the simultaneous determination of As, Cd, Cr, Cu, and Pb in various kinds of honey samples (acacia, floral, linden, rape, and milkweed) using the transversally heated graphite atomiser (THGA) with end-capped tubes and integrated graphite platforms (IGPs). For comparative GFAAS analysis, direct (without digestion) and indirect (with digestion in a microwave oven) sample preparation procedures were tested. The effects of several chemical modifiers, such as NH4H2PO4, NH4H2PO4-Mg(NO3)2, and Pd(NO3)2-Mg(NO3)2, were studied to obtain optimal pyrolysis and atomization conditions for the set of analytes studied. The most efficient modifier was proved to be the mixture of 5 μg Pd (applied as nitrate) plus 3 μg Mg(NO3)2, allowing the optimal 600 °C pyrolysis and 2300 °C atomization temperatures. To prevent the sputtering and foaming of the matrix during the drying and pyrolysis steps of the furnace heating program, the sample and modifier solutions (20 + 5 μl, respectively) were dispensed together onto the IGP of the THGA pre-heated at 80 °C.The effect of increasing concentration of honey matrix was studied on the integrated absorbance (Aint) signals of analytes. The Aint signals of Cr and Pb were not altered up to 10% (m/v) matrix content in the sample solutions. The matrix effect was slightly suppressive on the Aint signals of As, Cd, and Cu above 2% (m/v) honey concentration. The recovery was found to be ranged between 85 and 115% for Cd, Cr, Cu, and Pb, whereas it was a lower, compromise value of 70-99% for As. The limit of detection (LOD) data were 1, 0.04, 0.09, 0.3, and 0.6 μg l−1 for As, Cd, Cr, Cu, and Pb, respectively, which values correspond to 20, 0.8, 1.8, 5.3, and 12 ng g−1, respectively, in the solid samples. The characteristic masses were found to be 21 pg As, 1.3 pg Cd, 4 pg Cr, 12 pg Cu, and 33 pg Pb. The As, Cd, Cr, Cu, and Pb contents of the studied 42 honey samples varied significantly, i.e. from below the LOD up to 13, 3.3, 109, 445, and 163 ng g−1, respectively.  相似文献   

15.
A sorbent extraction method for the separation/preconcentration of Fe, Co, Pb, Cd, and Cr was developed. The analyte metal ions were retained on a column of Ambersorb 563 from a buffered sample solution. The flow rates of the sample and eluent solution were controlled by a peristaltic pump. The analyte ions were quantitatively retained at pH 9 by using an ammonia/ammonium chloride buffer solution, and were then eluted with 5 mL of 0.25 M HNO3 at 5 mL/min flow rate. The detection limits were in the range of 0.33 and 72 g/L for Cd and Pb, respectively. The relative standard deviations were less than 10%. Recoveries of spike addition to drinking water and seawater were quantitative. The method presented was applied for the determination of Fe, Co, Pb, Cd, and Cr ions in drinking and seawater samples with satisfactory results (recoveries >95%).  相似文献   

16.
A continuous-flow hydride generator is combined with a heated quartz tube atomizeratomic absorption spectrometer system for the trace determination of lead. Malic acid K2Cr2O7, HNO3—H2O2 and HNO3—(NH4)2S2O3 are all effective for plumbane generation by means of sodium tetrahydroborate. The relative merits of these systems are investigated in terms of sensitivity, efficiency of plumbane generation and interferences. The sensitivities (0.0044 absorbance) obtained under the recommended conditions for the three systems are 3.2, 1.7 and 1.1 ng Pb ml-1, respectively, whereas plumbane generation efficiencies are 33%, 47% and >80%, respectively, for 1 μg Pb ml-1. Silver, Au, Cu and Cd interfere seriously in all reaction systems. A dithizone extraction and back-extraction method is utilized to eliminate interfering ions, followed by reduction of the resulting solution in the peroxodisulphate system. The proposed method is applied to water samples and NBS 1566 oyster tissue.  相似文献   

17.
Ultrasonic slurry sampling electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry (USS–ETV–DRC–ICP–MS) for the determination of Cr, Cd and Pb in several plastic samples, using NH4NO3 as the modifier, is described. The influences of the instrumental operating conditions and the slurry preparation technique on the ion signals are investigated. A reduction in the intensity of the background at signals corresponding to chromium masses (arising from matrix elements) was achieved by using NH3 as the reaction cell gas in the DRC. The method was applied to determine Cr, Cd and Pb in two polystyrene (PS) samples and a polyvinyl chloride (PVC) sample using two different calibration methods, namely standard addition and isotope dilution. The results were in good agreement with those for digested samples analyzed by ultrasonic nebulization DRC–ICP–MS. The precision between sample replicates was better than 17% with the USS–ETV–DRC–ICP–MS method. The method detection limits, estimated from standard addition curves, were about 6–9, 1–2 and 8–11 ng g−1 for Cr, Cd and Pb, respectively, in the original plastic samples.  相似文献   

18.
Summary The distribution of metallic constituents in torrential rivers as a function of the size particle cannot be frequently achieved by conventional analytical procedures, because of the lack of sufficient amounts of the fine fractions. For the study of river sediments in the Basque Country, microanalytical methods have been developed both for major (Na, K, Ca, Mg, Fe, Al, Si) and trace (Cu, Zn, Mn, Cr, Pb, Ni, Cd) components. Wet digestion in PTFE vessels at 140°C was done with 0.05 g sample using HNO3-HClO4-HF-H3BO3 or HNO3-HClO4, respectively. Further determinations were made by i) emission spectrometry (Na, K), ii) visible spectrophotometry (Al), iii) FIA (Fe, Si) and iv) AAS with flow spoiler (Ca, Mg, Cu, Zn, Mn) or graphite furnace (Cr, Pb, Ni, Cd). The proposed method has been checked with a standard sample obtaining mean values almost coincident with the certified ones and variation coefficients lower than 2% for major and 8% for trace components. Then it was applied to total samples and the fine fractions (<63 m) of 26 samples of sediments from three torrential rivers. Replicated values with analogous variation coefficients were obtained. Some considerations on distribution of major and trace constituents as a function of particle size are also included.  相似文献   

19.
Isosulfan blue dye is used in sentinel node mapping technique to evaluate breast cancer patients where determination of different trace elements is required. A UV-photolysis assisted mineralization of isosulfan blue is described here for the determination of trace elements (Cr, Cd, Cu, Sn and Pb) by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In the present study advanced oxidation processes such as UV, UV/H2O2, and UV/H2O2/HNO3 have been assessed and compared for the degradation and mineralization of isosulfan blue dye. The extent of mineralization was determined on the basis of total organic carbon (TOC) measurement. The adopted procedure (UV/HNO3/H2O2) provided very low TOC content (0.5%), corresponding to a mineralization efficiency of > 99%. With the present procedure, the use of dynamic reaction cell (DRC) or collision cell was not required for chromium determination which suffers interference from the presence of carbon. Method detection limits were 0.0028, 0.0021, 0.016, 0.007, and 0.005 μg g? 1 for Cr, Cd, Cu, Sn and Pb respectively. The values obtained by the proposed method were cross-validated by those obtained by ETAAS analysis. The expanded uncertainties in the measurement at 95% confidence level (coverage factor 2) are in the range of 13.7–25.8%.  相似文献   

20.
Traces of Ag, Bi, Cd, Cu, Hg, Pb, Pd and Zn are separated by carrier precipitation with dithizone from diluted HNO3 and HCl solutions. The separated trace elements are determined by flame AAS and/or by spectrophotometry. The preconcentration recovery is dependent on the acid concentration of the sample solution. The amount of dithizone precipitated is optimized. The detection limits (ng/ml) are 15.0 (Pb, Zn), 12.0 (Pd), 10.0 (Bi), 6.0 (Ag), 5.0 (Hg), 2.0 (Cu) and 1.0 (Cd). Aluminium, aluminium sulfate and gallium are analyzed with the method. The accuracy of the results was checked by differential pulse voltammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号