首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supported liquid membranes (SLMs), prepared by immobilising the room temperature ionic liquids (RTILs) [CnMIM]PF6 (n = 4 and 8) and [C10MIM]BF4 in a polyvinylidene (PVDF) supporting membrane, were prepared and characterised by electrochemical impedance spectroscopy (IS). This non-invasive technique allows the determination of the electrical properties of a given sample, such as the electrical resistance and capacitance under working conditions, i.e., in contact with saline solutions.

Bearing in mind that the water content of the ionic liquids can drastically affect their physicochemical properties, impedance measurements of the SLMs, placed between two aqueous solutions, were carried out at regular time intervals, in order to assess the impact of the presence of water inside the RTILs on the electrical properties of supported ionic liquid membranes. The electrical resistance of the SLMs and its variation during long-term operation was also used as a physical parameter to identify the presence/loss of ionic liquid from the pores of the support. Additionally, the comparison of the IS results obtained for the SLMs with those obtained for the supporting membrane was carried out, in order to gather information about electrical changes associated with the presence of ionic liquid in the pores.  相似文献   


2.
An electrical impedance spectroscopy (EIS) method and apparatus that eliminates the need for electrodes in the feed and permeate solutions was evaluated as a means of characterising physical and performance properties of polysulphone ultrafiltration membranes in situ. The membranes were sputter-coated on one side with platinum before assembly in the apparatus. Alternating electrical current used for impedance measurements was injected directly into the coat via dry electrical contacts with the edges of the membrane. As the frequency of the EIS measurement was increased the current increasingly dispersed into the solution via the interfacial region (double layer) and/or fouling layers that the coat formed with the solution. These spatial dispersions manifested as characteristic dispersions with frequency of the impedance of the system. Water flux measurements, field emission scanning electron microscopy and atomic force microscopy were also used to quantify the important membrane performance parameters of porosity and surface roughness. These estimates were in good agreement with the impedance model for the in situ membrane system that was fitted to the measured impedance dispersions. The study shows that EIS measurements potentially can quantify membrane performance parameters in situ better than those techniques that require disruption of the membrane separation process. The method also has the potential for monitoring the deposition of particulate that can lead to fouling.  相似文献   

3.
An electrical impedance spectroscopy (EIS) method for measuring changes in the electrical properties of synthetic membranes is investigated as a possible way of monitoring, in situ, the separation performance of these membranes including membrane fouling. Unlike other EIS methods, which require traditional electrodes in the feed and permeate solutions, alternating current is injected directly into the membrane via external electrical contacts with the edges of the membrane. A metal layer sputtered onto the surface of the membrane can be used to enhance its conduction properties. The impedance models of these systems is shown to be sensitive to membrane surface properties, including porosity, as well as electrical properties of solutions and the interfacial regions between the membrane surfaces and the solutions. The investigation indicates that fouling along the surface of the membrane might be more readily detectable than inside the pores.  相似文献   

4.
Characterization of PVDF membranes by vibrational spectroscopy   总被引:3,自引:0,他引:3  
In order to investigate the effectiveness of vibrational spectroscopy in the characterization of polymeric membranes, several poly(vinylidene fluoride) (PVDF) membranes with different porous structures were prepared by the phase inversion process using different casting solvents. An accurate analysis of the Fourier transform Raman (FT-Raman) and the Fourier transform infrared (FTIR) spectra was performed for each sample and the scanning electron microscopy (SEM) results were noted. To highlight the specific problems related to porosity and surface roughness in the acquisition of spectra by different sampling techniques, the attenuated total reflection (ATR) and photoacoustic spectroscopy (PAS) spectra were compared with corresponding spectra obtained from dense films. A detailed analysis of these spectra highlighted their ability in determining the differences in the polymer structure between the two membrane sides. This indicates that (considering the results given by all the different techniques) thorough qualitative membrane characterization can generally be achieved. Moreover, the good quality spectra of the PVDF membrane provide information on a portion of material which depends on its structure, highlighting the usefulness of FTIR-PAS in studying porous materials which, as a rule, give low quality infrared spectra when other sampling techniques are used. However, the complex and inhomogeneous structure of these materials can make quantitative analysis more, or less, difficult.  相似文献   

5.
The electrochemical impedance spectra (EIS) of tethered bilayer membranes (tBLMs) were analyzed, and the analytical solution for the spectral response of membranes containing natural or artificially introduced defects was derived. The analysis carried out in this work shows that the EIS features of an individual membrane defect cannot be modeled by conventional electrical elements. The primary reason for this is the complex nature of impedance of the submembrane ionic reservoir separating the phospholipid layer and the solid support. We demonstrate that its EIS response, in the case of radially symmetric defects, is described by the Hankel functions of a complex variable. Therefore, neither the impedance of the submembrane reservoir nor the total impedance of tBLMs can be modeled using the conventional elements of the equivalent electrical circuits of interfaces. There are, however, some limiting cases in which the complexity of the EIS response of the submembrane space reduces. In the high frequency limit, the EIS response of a submembrane space that surrounds the defect transforms into a response of a constant phase element (CPE) with the exponent (α) value of 0.5. The onset of this transformation is, beside other parameters, dependent on the defect size. Large-sized defects push the frequency limit lower, therefore, the EIS spectra exhibiting CPE behavior with α ≈ 0.5, can serve as a diagnostic criterion for the presence of such defects. In the low frequency limit, the response is dependent on the density of the defects, and it transforms into the capacitive impedance if the area occupied by a defect is finite. The higher the defect density, the higher the frequency edge at which the onset of the capacitive behavior is observed. Consequently, the presented analysis provides practical tools to evaluate the defect density in tBLMs, which could be utilized in tBLM-based biosensor applications. Alternatively, if the parameters of the defects, e.g., ion channels, such as the diameter and the conductance are known, the EIS data analysis provides a possibility to estimate other physical parameters of the system, such as thickness of the submembrane reservoir and its conductance. Finally, current analysis demonstrates a possibility to discriminate between the situations, in which the membrane defects are evenly distributed or clustered on the surface of tBLMs. Such sensitivity of EIS could be used for elucidation of the mechanisms of interaction between the proteins and the membranes.  相似文献   

6.
We report an electrical impedance spectroscopy (EIS) characterization of composite systems formed by emulsion polymerization of polypyrrole (PPY) in concentrated aqueous solutions of sodium dodecyl sulfate (SDS) containing dispersed magnetite particles. SDS-(Fe3O4)-(conducting polymer) microaggregates with different iron contents were prepared by varying in a reciprocal manner the relative amounts of the metal oxide and PPY. We have measured the zeta-potential and the average size of the corresponding dispersed particles and examined their relative composition through energy dispersive X-ray (EDX) microanalysis and Fourier transform infrared (FTIR) spectroscopy. Important aspects of the charge transport in these composite particles can be identified by mapping the real and imaginary parts of their complex impedance as a function of the frequency of the applied external electric field. For instance, for binary composites SDS-(Fe3O4) polarization effects are dominant at the low-frequency regime, with a well-defined dielectric relaxation easily identifiable. On the other hand, when the relative amount of PPY is progressively increased in the ternary SDS-(Fe3O4)-PPY composites, a transition between different charge transport mechanisms is observed at higher frequencies. The EIS results suggest that in these ternary aggregates the PPY chains envelop the metal oxide clusters and effectively shield them from the external field, and that only in binary samples that do not contain PPY is that the surfactant molecules can directly enclose the magnetite particles. These results are consistent with the fact that the average size of the aggregates in the ternary composites is in general larger than those of either SDS-PPY or SDS-magnetite binary particles.  相似文献   

7.
Different isolated tomato fruit cuticular membranes (ripe and green tomato cuticles and the cutin of these membranes) were studied by impedance spectroscopy measurements when the membranes were in contact with NaCl solutions at different concentrations. Remarkable differences in the impedance plots and the equivalent circuits associated to each membrane sample were obtained: the ripe tomato cuticle and the cutin, only present a relaxation process, but for the green tomato cuticle two relaxation processes were obtained. Using the equivalent circuits as models, electrical and electrochemical parameters for each membrane were determined. These results permit us to assign the relaxation processes to the different components of the tomato membrane (polyester matrix, carbohydrates and pigments), obtaining in this way a detailed picture of the different environments of the plant interface. Variation with NaCl concentration for the different electrical parameters was also studied, and the electrical resistance of the biopolymer matrix was obtained.  相似文献   

8.
Nanocrystalline potassium polytitanates K2O·nTiO2·mH2O represent a new type of semiconducting compounds which are characterized by a high specific surface that makes them promising for use in gas sensors. In this work, we have studied potassium polytitanate mesoporous nanoparticle agglomerates placed over a SiO2/Si substrate equipped with multiple coplanar electrodes to measure the electrical response to various organic vapors, 1000 ppm of concentration, mixed with air by impedance spectrometry in range of the 10−2–106 Hz. The recorded impedance data for each sensor segment are associated with RC components of an equivalent circuit which are applied to selectively recognize the test vapors exploiting a “multisensor array” approach.  相似文献   

9.
Surface modification methods are applied to alter interfacial phenomena and improve ion transport through membranes. In this work we present a novel method for tailoring the surface of cation-exchange membranes based on the deposition of thin microgel monolayers. The charge of such layers exerts a strong influence on the monovalent-ion-selectivity, and this is reflected in the electrochemical impedance responses. Membranes coated with uncharged microgels show similar behavior to that of unmodified ones, with impedance spectra dominated by low-frequency diffusional arcs. However, membranes modified with positively charged microgels exhibit an increased resistance due to the hindered transport of cations through the modification. An additional high-frequency capacitive arc is obtained with the monovalent-ion-selective membranes, which is attributed to concentration polarization effects at the membrane/modification interface. The characteristic frequency of this arc decreases with the valency of the ion, thus proving that multivalent ions pass through the modification layer at rates much slower than monovalent ones. Accordingly, electrochemical impedance spectroscopy has been used to feature monovalent-ion-selective properties of layered membranes.  相似文献   

10.
徐又一 《高分子科学》2013,31(7):994-1001
A novel method for the surface modification of PVDF porous membranes was introduced. Styrene-(N-(4-hydroxyphenyl) maleimide) alternating copolymer SHMI-Br was blended with PVDF to fabricate SHMI-Br/PVDF membranes. The C-Br bond on the SHMI-Br/PVDF membrane was served as initial site of ATRP, and P(PEGMA) brush was grafted on the PVDF membrane. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR/FTIR) was used to prove the P(PEGMA) brushes were successfully grafted onto the SHMI-Br/PVDF membrane surface. Introduction of P(PEGMA) brushes on the PVDF membrane surface enhanced the hydrophilicity effectively. When the PEGMA degree of grafting was 16.7 wt%, the initial contact angle of PVDF membrane decreased from 98° to 42°. The anti-fouling ability of PVDF membrane was improved significantly after P(PEGMA) brush was grafted. Taking the PEGMA degree of grafting 16.7 wt% as an example, the flux of protein solution was about 151.21 L/(m2 h) when the pH value of the BSA solution was 4.9. As the pH value was increased to 7.4, the flux was changed to 180.06 L/(m2 h). However, the protein solution flux of membrane M3 (PEGMA: 0 wt%) was only 73.84 L/(m2 h) and 113.52 L/(m2 h) at pH 4.9 and 7.4, respectively.  相似文献   

11.
The formation of tethered lipid bilayer membranes (tBLMs) from unilamelar vesicles of egg yolk phosphatidylcholine (EggPC) on mixed self-assembled monolayers (SAMs) from varying ratios of 6-mercaptohexanol and EO(3)Cholesteryl on gold has been monitored by simultaneous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The influence of the lipid orientation (and hence the anisotropy) of lipids on a gold film on the dichroic ratio was studied by simulations of spectra with a matrix method for anisotropic layers. It is shown that for certain tilt angles of the dielectric tensor of the adsorbed anisotropic layer dispersive and negative absorption bands are possible. The experimental data indicate that the structure of the assemblies obtained varies with varying SAM composition. On SAMs with a high content of EO(3)Cholesteryl, tBLMs with reduced fluidity are formed. For SAMs with a high content of 6-mercaptohexanol, the results are consistent with the adsorption of flattened vesicles, and spherical vesicles have been found in a small range of surface compositions. The kinetics of the adsorption process is consistent with the assumption of spherical vesicles as long-living intermediates for surfaces of a high 6-mercaptohexanol content. No long-living spherical vesicles have been detected for surfaces with a large fraction of EO(3)Cholesteryl tethers. The observed differences between the surfaces suggest that for the formation of tBLMs (unlike supported BLMs) no critical surface coverage of vesicles is needed prior to lipid bilayer formation.  相似文献   

12.
Yang L 《Talanta》2008,74(5):1621-1629
In this study, we present a new, simple and rapid impedance method to detect bacterial cells by making use of the impedance properties of bacterial cell suspensions using interdigitated microelectrodes. It was found that bacterial cell suspensions in deionized (DI) water with different cell concentrations could generate different electrical impedance spectral responses, whereas cell suspensions in phosphate buffered saline (PBS) solution could not produce any significant differences in impedance spectra in response to different cell concentrations. In DI water suspensions, impedance at 1 kHz decreased with the increasing cell concentrations in the suspensions. The impedance of cell suspensions in DI water was discussed and found that it was resulted from the cell wall charges and the release of ions or other osmolytes from the cells. A linear relationship between the impedance and the logarithmic value of the cell concentration was found in the cell concentration range from 106 to 1010 cfu/ml, which can be expressed by a regression equation of Z (kΩ) = −2.06 log C (cells/20 μl) + 5.23 with R2 = 0.98. The detection limit was calculated to be 3.45 × 106 cfu/ml, which is comparable with many label-free immunosensors for detection of pathogenic bacteria reported in the literature. To achieve the selectivity of this method, we also demonstrated the feasibility of integrating magnetic separation to this impedance method. This study has demonstrated that bacterial cell concentration can be inferred by measuring the impedance of cell suspensions in DI water. This new detection mechanism could be an alternative to current impedance methods that have been reported for the detection of bacterial cells, e.g. impedance microbiology and electrical/electrochemical impedance biosensors.  相似文献   

13.
In this contribution we focus on the on-line analysis of neuronal cells embedded in gel matrices by means of variations in their dielectric and conductive properties. For impedance measurement of thin gel films in flow-through regime a novel impedimetric biosensor was developed. A technique for the preparation of gels containing Neuro-2a neuroblastoma cells (N2a) in between the measurement electrodes was set up. Impedance spectra of gels with N2a cells were analyzed and cell viability was tested. Experimental results showed that even at frequencies (>>1 MHz) and a gel concentration of 2 % with ~8300 cells/μL conductive properties dominate the spectrum.  相似文献   

14.
A bipolar membrane (BM) is composed of one cation and one anion ion-exchange layers joined together in series. In order to obtain the AC electrical impedance of a BM, a small sinusoidal current perturbation was superimposed to the DC current, and the resulting frequency-dependent impedance spectra were recorded under different conditions of electrical polarisation and temperature for five BMs. The experimental spectra were measured in three current ranges: below the limiting current region, at the onset of the overlimiting region and in the electric field enhanced water dissociation region. This allows for a better understanding of the contributions of the salt and water ions to the measured impedance spectra. Measurements of the impedance of the forward biased membrane were also carried out. Although the experimental impedance spectra appear to be in qualitative agreement with previous theoretical models incorporating the effect of the electric field enhanced water dissociation, a quantitative analysis of the results is not still possible due to the high number of parameters involved.  相似文献   

15.
Proteases are involved in numerous cell functions and abnormal proteolysis may lead to a diversity of serious diseases. Herein, a simple electrochemical method is developed to study proteolysis by employing unmodified gold nanoparticles (AuNPs). Substrate of a protease is modified on a gold disk electrode, forming a barrier for electrochemical species and reflecting a significant charge transfer resistance (Rct). After the proteolysis process, the substrate can be cleaved coupled with the decline of Rct. The electrical properties of the substrate residues on the electrode may also change, leading to the subsequent adsorption of AuNPs. Due to the excellent electrical conductivity of AuNPs, Rct can be further decreased, which can be used to reveal the proteolysis process. The proposed method allows the determination of the model protease, trypsin, with desirable sensitivity and specificity. It may also hold great potential use in the study of other proteolysis processes and some biomedical applications in the future.  相似文献   

16.
We report the study of the interactions of bacterial toxin streptolysin O (SLO) and cholesterol-containing membranes using electrochemical impedance and surface plasmon resonance (SPR) spectroscopy at low hemolytic units on a novel supported membrane interface. The detailed understanding of the process will aid significantly the construction of nanoscale transport channels for biosensing applications. Cholesterol-containing egg PC vesicles, pristine and incubated with SLO toxin, were fused onto a hexyl thioctate (HT)-modified gold substrate. The charge-transfer resistance of the resulting lipid membrane, which is related to the formation of the transmembrane pores, is measured with the aid of an electroactive probe. Impedance spectra were collected over a range of 0.1-100 kHz, and the obtained complex resistance was fit to an equivalent circuit. The charge-transfer resistance decreases for increasing SLO concentration, following a first-order exponential decay. The two-part membrane interface was further characterized with SPR spectroscopy. For the hexyl thioctate support layer, an equivalent monolayer thickness of 1.3 nm was determined. This value suggests a loosely packed structure of the monolayer on gold, presenting an ideal platform for permeability studies. A comparative study on the fusion behavior of vesicles with and without SLO induced pores revealed no substantial difference for the two systems, indicating that the pore formation has no adverse effect on the integrity of the vesicles. The resulting lipid membrane thickness from pre-perforated lipids was found to be 3.2 nm, suggesting that one leaflet is knocked off during the fusion process and a hybrid membrane is formed. A slightly higher thickness value of 3.4 nm was obtained for membranes from non-perforated vesicles. Deposition of lipids and subsequent incubation with SLO, as monitored by SPR, shows that the HT surface chemistry allows partial insertion of the toxin into the membrane, indicating unique properties as compared to the previously explored long-chain alkylthiols.  相似文献   

17.
Electrochemical impedance spectroscopy (EIS) is a powerful technique that is used for characterizing electrochemical systems. The EIS data can be correlated with many key physical properties, including rates of diffusion and reaction, and microstructural features. However, the EIS analysis is prone to the potential ambiguities in interpretation. Judicious modeling and its combination with statistics can be used to overcome these challenges and enhance the insight one can gain from EIS.  相似文献   

18.
The hybridization of immobilized oligonucleotides probe strands with solution phase targets is the underlying principle of microarray-based techniques for the analysis of DNA variation. To study the kinetics of DNA/DNA hybridization, target DNA is often prior labeled with markers. A label-free method of electrochemical impedance spectra (EIS) for study the hybridization in process was reported. The Langmuir model was used to determine the association rate constant (Kon), the dissociation rate constant (Koff) and the affinity rate constant (KA), for perfect matched DNA hybridization. The results show that, EIS is a successful technique possessing high effectivity and sensitivity to study DNA/DNA hybridization kinetics. This work can provide another view on EIS for the studying of DNA/DNA hybridization.  相似文献   

19.
Two sets of composite membranes having an asymmetric sulfonated polysulfone membrane as support layer have been obtained and electrically characterized (membranes SPS-PEG and PA-LIGS). The skin layer of the membrane SPS-PEG contains different percentages of polyethylene glycol in the casting solution (5, 25, 40, and 60 wt%), while lignosulfonate was used for manufacturing PA-LIGS membranes (5, 10, 20, and 40 wt%). Membrane electrical characterization was done by means of impedance spectroscopy (IS) measurements, which were carried out with the membranes in contact with NaCl solutions at different concentrations (10(-3) < or = c(M) < or = 5x10(-2)). Electrical resistance and equivalent capacitance of the different membrane samples were determined from IS plots by using equivalent circuits as models. Results show a clear decrease in the membrane electrical resistance as a result of both polysulfone sulfonation and the increase of the concentration of modifying substances, although a kind of limit concentration was obtained for both polyethylene glycol and lignosulfonate (40 and 20%, respectively). Results also show a decrease of around 90% in electrical resistance due to polysulfone sulfonation, while the value of the dielectric constant (hydrated state) clearly increases.  相似文献   

20.
Journal of Solid State Electrochemistry - Dynamic EIS (dEIS) is the joint use of cyclic voltammetry and electrochemical impedance spectroscopy. A method is planned for data evaluation which...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号