首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In this work, the interaction of memantine with human serum albumin (HSA) immobilized on porous silica particles was studied using a biochromatographic approach. The determination of the enthalpy change at different pH values suggested that the protonated group in the memantine–HSA complex exhibits a heat protonation with a magnitude around 65 kJ mol?1. This value agrees with the protonation of a guanidinium group, and confirmed that an arginine group may become protonated in the memantine–HSA complex formation. The thermodynamic data showed that memantine–HSA binding, for low temperature (<293 K), is dominated by a positive entropy change. This result suggests that dehydration at the binding interface and charge–charge interactions contribute to the memantine–HSA complex formation. Above 293 K, the thermodynamic data ΔH and ΔS became negative due to van der Waals interactions and hydrogen bonding which are engaged at the complex interface. The temperature dependence of the free energy of binding is weak because of the enthalpy–entropy compensation caused by a large heat capacity change, ΔC p = ? 3.79 kJ mol?1 K?1 at pH = 7. These results were used to determine the potential binding site of this drug on HSA.  相似文献   

3.
This study was designed to examine the interaction of histamine H2-receptor antagonist drug ranitidine (RTN) with human serum albumin by multi-spectroscopic methods. The experimental results showed the involvement of dynamic quenching mechanism which was further confirmed by lifetime spectral studies. The binding constants (K a) at three temperatures (288, 298, and 308 K) were 2.058 ± 0.020, 4.160 ± 0.010 and 6.801 ± 0.011 × 104 dm3 mol?1, respectively, and the number of binding sites (m) were 1.169, respectively; thermodynamic parameters ΔH 0 (44.152 ± 0.047 kJ mol?1), ΔG 0 (?26.214 ± 0.040 kJ mol?1), and ΔS 0 (236.130 ± 0.025 J K?1 mol?1) were calculated. The distance r between donor and acceptor was obtained (r = 3.40 nm) according to the Förster theory of non-radiative energy transfer. Synchronous fluorescence, CD, AFM and 3D fluorescence spectral results revealed the changes in secondary structure of the protein upon interaction with RTN. A molecular modeling study further confirmed the binding mode obtained by the experimental studies.  相似文献   

4.
The interaction of ginkgolic acid (15:1, GA) with human serum albumin (HSA) was investigated by FT–IR, CD and fluorescence spectroscopic methods as well as molecular modeling. FT–IR and CD spectroscopic showed that complexation with the drug alters the protein’s conformation by a major reduction of α-helix from 54 % (free HSA) to 46–31 % (drug–complex), inducing a partial protein destabilization. Fluorescence emission spectra demonstrated that the fluorescence quenching of HSA by GA was by a static quenching process with binding constants on the order of 105 L·mol?1. The thermodynamic parameters (ΔH = ?28.26 kJ·mol?1, ΔS = 11.55 J·mol?1·K?1) indicate that hydrophobic forces play a leading role in the formation of the GA–HSA complex. The ratio of GA and HSA in the complex is 1:1 and the binding distance between them was calculated as 2.2 nm based on the Förster theory, which indicates that the energy transfer from the tryptophan residue in HSA to GA occurs with high probability. On the other hand, molecular docking studies reveal that GA binds to Site II of HSA (sub-domain IIIA), and it also shows that several amino acids participate in drug–protein complexation, which is stabilized by H-bonding.  相似文献   

5.
Hanwen Sun  Pan He 《Chromatographia》2008,68(11-12):969-975
The binding of fluoroquinolones to the transport protein, human serum albumin (HSA), under simulated physiological conditions has been studied by capillary electrophoresis–frontal analysis (CE–FA). The binding of these drugs to human plasma was evaluated by using ultrafiltration and capillary electrophoresis. The free drug concentration [D]f at each HSA concentration was determined by the plateau height in the electropherograms and the calibration lines. The binding constants of fluoroquinolones and HSA were estimated using nonlinear regression with origin 7.5 software. The fluoroquinolones were found to show low affinity toward HSA, with binding constants ranging from 1.73 × 102 to 5.40 × 102 M?1. The percentages of protein binding (PB) for fluoroquinolones to HSA were between 8.6 and 22.2%, while the PB percentages for fluoroquinolones to human plasma were between 10.2 and 33.1%. It can be found that the PB percentages for fluoroquinolones to HSA are mostly lower than those for fluoroquinolones to human plasma. It suggests that HSA is the primary protein responsible for the binding of fluoroquinolones in human plasma. The thermodynamic parameters were obtained by CE–FA. The positive ?H and ?S values obtained by CE–FA showed that the binding reaction was an endothermic process, and the entropy drive the binding and hydrophobic interaction played major roles in the binding of fluoroquinolones to HSA.  相似文献   

6.
The reduction reaction of the Cu(II)–pitn complex (pitn = 1,3-di(pyridine-2-carboxaldimino)propane) by decamethylferrocene [Fe(Cp*)2] was examined in acetonitrile. The observed pseudo-first-order rate constants exhibited saturation kinetics with increasing excess amount of [Fe(Cp*)2]. Detailed analyses revealed that the reaction is controlled by a structural change prior to the electron transfer step, rather than a conventional bimolecular electron transfer process preceded by ion pair (encounter complex) formation. The rate constant for the structural change was estimated to be 275 ± 13 s?1 at 298 K (?H* = 33.3 ± 1.0 kJ·mol?1, ?S* = 86 ± 5 J·mol?1·K?1), which is the fastest among gated reactions involving CuN4 complexes. It was confirmed by EPR measurement and Conflex calculations that the dihedral angle between the two N–N planes is significantly large (40°) in solution whereas it is merely 17.14° in the crystal.  相似文献   

7.
Study on the stoichiometry and affinity of the arsenicals bound to HSA is an important step toward a better understanding of arsenic toxic effects. After incubation of AsIII or AsV with HSA at the physiological conditions (pH 7.43 and 37 °C), the free arsenicals and arsenic-HSA complexes were separated and detected by the combined techniques of microdialysis and liquid chromatography with hydride generation atomic fluorescence spectroscopy (MD–LC–HGAFS). The decrease of AsIII peak response rather than AsV indicated that HSA reacted with AsIII but not AsV. The binding plots indicated that the binding between HSA and AsIII was in Scatchard pattern when the concentration ratios of AsIII to HSA were ≤1:1. The strong binding sites (n 1) were 1.6 and the stability constant (K 1) was 1.54 × 106 M?1. When the concentration ratios of AsIII to HSA were >1:1, the binding was in Plasvento pattern with the stability constant K 2 ? 0 and no specific binding of AsIII with HSA. On the contrary, AsV did not show binding with HSA. The results showed that AsIII reacted with HSA more readily than AsV, which provides a chemical basis for arsenic toxicity.  相似文献   

8.
The interaction between two novel water-soluble palladium(II) complexes (Pd(bpy)(pyr-dtc)]NO3, complex I and ([Pd(phen)(pyr-dtc)]NO3, complex II, where bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline and pyr-dtc = pyrrolidinedithiocarbame) and human serum albumin (HSA) was investigated by fluorescence quenching spectroscopy, synchronous, fluorescence resonance energy transfer (FRET) and three-dimensional fluorescence combined with UV–Vis absorption spectroscopy and circular dichroism technique under simulative physiological conditions. Fluorescence analysis demonstrated that the quenching mechanism of HSA by Pd(II) complexes was static fluorescence quenching and hydrogen bonds and van der Waals interactions were the main intermolecular force based on thermodynamic data. The HSA–Pd(II) complex interaction had a high affinity of 105 M?1, and the number of binding sites n is almost 1. The results of synchronous fluorescence, three-dimensional fluorescence spectra, UV–Vis absorption and CD spectroscopy indicated that these two complexes may induce the microenvironment around the tryptophan residues and the conformation of human serum albumin. The binding distance (r) in the interaction between Pd(II) complex and HSA was estimated by the efficiency of fluorescence resonance energy transfer (FRET). Furthermore, results from multiple spectroscopic studies are consistent and indicate that the antitumor Pd(II) complexes can efficiently bind with human serum albumin molecules, providing a reasonable model that can help in understanding the design, transportation and toxic effects of anticancer agents.  相似文献   

9.
The host–guest interaction of tolmetin (TOL) with β-cyclodextrin (β-CD) and the influence of human serum albumin (HSA) on the formation of the inclusion complex were studied by 1D and 2D NMR spectroscopy. The TOL/β-CD inclusion complex formed at a molar ratio of 1:1 with a binding constant value of 2164.5 L·mol?1. Data analysis showed that the addition of 10 μmol·L?1 of HSA weakened the strength of TOL binding to β-CD (K a = 1493 L·mol?1). The interaction of TOL with HSA in the absence and presence of β-CD was studied by analyzing the fluorescence quenching data. The Stern–Volmer quenching constants and the binding constants are found to be smaller in the presence of β-CD, suggesting that β-CD hinders the strong interaction of TOL with HSA by complex formation. Additionally, the presence of β-CD does not induce conformational and microenvironmental changes on HSA.  相似文献   

10.
The interaction of plumbagin (PLU) with human serum albumin (HSA) in physiological buffer (pH=7.4) was studied by fluorescence spectroscopy. Results obtained from analysis of the fluorescence spectra indicated that PLU has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. Fluorescence quenching data revealed that the quenching constants (K) are 4.43×104, 3.26×104 and 1.69×104 L?mol?1 at 293, 303 and 313 K, respectively. The thermodynamic parameters ΔH° and ΔS° were calculated to be ?36.63 kJ?mol?1, and ?35.702 J?mol?1?K?1 respectively, which suggested that van der Waals interactions and hydrogen bonds play a major role in the interaction of PLU with HSA. The distance between donor (HSA) and acceptor (PLU) was calculated to be 3.76 nm based on Förster’s non-radiative energy transfer theory. The results of synchronous fluorescence spectra showed that binding of PLU to HSA can induce conformational changes in HSA.  相似文献   

11.
In this paper, several rare earth [terbium(III), ytterbium(III) and yttrium(III)] complexes containing 2,9-dimethyl-1,10-phenanthroline (Me2Phen) were successfully synthesized and characterized by means of elemental analysis (CHN), infrared spectroscopy (FT-IR), UV–vis absorption spectroscopy and 1HNMR. To explore the potential medicinal value of these complexes (MMe2Phen), their binding interactions with human serum albumin (HSA) were investigated through UV–vis and fluorescence spectroscopies and also molecular docking examinations. The thermodynamic parameters, binding forces and Förster resonance distance between these complexes and Trp-214 of HSA were estimated from the analysis of fluorescence measurements. The values of estimated binding constants (Kb) ranging for the formation of MMe2Phen:HSA complex were in the order of 105 M?1. The thermodynamic parameters determined by van’t Hoff analysis of KbH°?<?0 and ΔS°?<?0) clearly indicate the major rules of hydrogen bonds and van der Waals interactions in the formation process of MMe2Phen:HSA. The values of Stern–Volmer constant and the evaluation of dynamic quenching constant at various temperatures provided good evidences for static quenching mechanism. Furthermore, the results of molecular docking calculation and competitive binding experiments represent the binding of these complexes to site 3 of HSA located in subdomain IB, containing both polar and apolar residues. The consistency of computational and experimental results, according to the binding sites and the order of binding affinities (TbMe2Phen?>?YbMe2Phen?>?YMe2Phen), supports the accuracy of docking calculation.  相似文献   

12.
Two DOTA-based proligands bearing a pendant diphenylphosphinamide 4a and 4b were synthesised. Their Eu(III) complexes exhibit sensitised emission when excited at 270 nm via the diphenylphosphinamide chromophore. Hydration states of q = 1.5 were determined from excited state lifetime measurements (Eu.4a $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 2. 1 4 \,{\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 0. 6 4 \,{\text{ms}}^{ - 1} $ ; Eu.4b $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 2. 6 7\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 1. 1 8 \,{\text{ms}}^{ - 1} $ ). In the presence of human serum albumin (HSA) (0.1 mM Eu.4a/b, 0.67 mM HSA, pH 7.4) q = 0.4 for Eu.4a ( $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 1. 3 4\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 0. 7 5\, {\text{ms}}^{ - 1} $ ) and q = 0.6 for Eu.4b ( $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 1. 8 3\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 1.0 5 \,{\text{ms}}^{ - 1} $ ). Relaxivites (pH 7.4, 298 K, 20 MHz) of the Gd(III) complexes in the absence and presence of HSA (0.1 mM Gd.4a/b, 0.67 mM HSA) were: Gd.4a (r 1 = 7.6 mM?1s?1 and r 1 = 11.7 mM?1s?1) and Gd.4b. (r 1 = 7.3 mM?1s?1 and r 1 = 16.0 mM?1s?1). These relatively modest increases in r 1 are consistent with the change in inner-sphere hydration on binding to HSA shown by luminescence measurements on Eu.4a/b. Binding constants for HSA determined by the quenching of luminescence (Eu) and enhancement of relaxivity (Gd) were Eu.4a (27,000 M?1 ± 12%), Eu.4b (32,000 M?1 ± 14%), Gd.4a (21,000 M?1 ± 15%) and Gd.4b (26,000 M?1 ± 15%).  相似文献   

13.
The thermally stimulated depolarization current (TSDC) technique has been used to study the slow molecular mobility of polysulfone in the glassy state and in the glass transformation region, i.e., in the temperature ranging from ?155 to 183 °C. Since the polysulfone is a rigid polymer without polar side-groups, a broad and low-intensity secondary relaxation was detected in the temperature region from ?120 °C up to the glass transition; the activation energy of the motional modes of this secondary relaxation is in the range between 35 and 100 kJ mol?1. The glass transition temperature of polysulfone provided by the TSDC technique is T M = T g = 176 °C (at 4 °C min?1). The relaxation time at this temperature is τ(T g) = 33 s and the fragility index was found to be m = 91. Our results are compared with literature values obtained by dynamic mechanical analysis and by dielectric relaxation spectroscopy. The amorphous polysulfone was also characterized by DSC; a glass transition signal with an onset at T on = 185.5 ± 0.3 °C (heating rate 10 °C min?1) was detected, with ΔC p = 0.21 ± 0.01 J g?1 °C?1.  相似文献   

14.
Here, the interaction of single-walled carbon nanotubes (SWCNTs) and human serum albumin (HSA) as one of the most important proteins for carrying and binding of drugs was investigated and the impact of radius to volume ratio and chirality of the SWCNTs was evaluated using molecular docking method. Molecular docking results represented that zigzag SWCNT with radius to volume ratio equal to 6.77 × 10?3 Å?2 has the most negative binding energy (?17.16 kcal mol?1) and binds to the HSA cleft by four π–cation interactions. To study the changes of HSA structure, the complex of HSA–SWCNT was subjected to 30 ns molecular dynamics simulation. The MD results showed that HSA was compressed about 2% after interaction with SWCNT. The equilibrated structure of HSA–SWCNT complex was used to compare the binding of warfarin to HSA in the absence and presence of SWCNT. The obtained results represent that warfarin-binding site was changed in the presence of SWCNT and its binding energy was increased. Really, warfarin was bound on the surface of SWCNT instead of its binding site on HSA. It means that HSA function as a carrier for warfarin is altered, the free concentration of warfarin is changed, and its release is decreased in the presence of SWCNT.  相似文献   

15.
The adsorption of the uranyl ions from aqueous solutions on the nanoporous ZnO powders has been investigated under different experimental conditions. The adsorption of uranyl on nanoporous ZnO powders were examined as a function of the contact times, pH of the solution, concentration of uranium(VI) and temperature. The ability of this material to remove U(VI) from aqueous solution was followed by a series of Langmuir and Freunlinch adsorption isotherms. The adsorption percent and distribution coefficient for nanoporous ZnO powders were 98.65 % ± 1.05 and 7,304 mL g?1, respectively. The optimum conditions were found as at pH 5.0, contact time 1 h, at 1/5 Zn2+/urea ratio, 50 ppm U(VI) concentration and 303 K. The monomolecular adsorption capacity of nanoporous ZnO powders for U(VI) was found to be 1,111 mg g?1 at 303 K. Using the thermodynamic equilibrium constants obtained at different temperatures, various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, have been calculated. Thermodynamic parameters (ΔH° = 28.1 kJ mol ?1, ΔS° = 160.30 J mol?1 K?1, ΔG° = ?48.54 kJ mol?1) showed the endothermic and spontaneous of the process. The results suggested that nanoporous ZnO powders was suitable as sorbent material for recovery and adsorption of U(VI) ions from aqueous solutions.  相似文献   

16.
The potential-energy surface for the Li(2S)–HF (? X1Σ+ interaction, where HF is kept rigid, is calculated using the supermolecular unrestricted fourth-order Møller–Plesset perturbation theory. The basis set superposition error corrected potential indicates two minima. The global minimum occurs for the bent Li...FH structure at R=1.95 Å and θ=70° with a relatively deep well of De=1,706 cm?1 and the secondary minimum is found for the linear Li...HF configuration at R=4.11 Å with a well depth ofDe=288 cm?1. A barrier of 177 cm?1 (with respect to the secondary linear minimum) separates these two minima. In this study 27 bound states of the bent Li...FH minimum and eight bound states of the linear Li...HF minimum up to the Li+HF dissociation threshold are calculated. The energy partitioning using the intermolecular perturbation theory scheme shows that the origins of the stability of the structures studied are entirely different. The global minimum is stabilised using the attractive Coulombic interaction and unrestricted Hartree–Fock deformation energy. The latter term originates from the mutual electric polarisation effects. The secondary linear minimum is mostly determined by the anisotropy of the repulsive Heitler–London exchange-penetration and attractive dispersion energies.  相似文献   

17.
The thermodynamic properties of 2-mercaptopyridine-N-oxide (pyrithione, PT) were studied potentiometrically in NaCl aqueous solutions at different ionic strengths and temperatures. A set of protonation constants is provided, together with distribution (water/2-methyl-1-propanol) and solubility data. The total and the specific solubility (solubility of neutral species) values of pyrithione were determined and, for example, are 0.0561 and 0.0518 mol·dm?3 at c NaCl = 0.244 mol·dm?3 and T = 298.15 K. By fitting the distribution and solubility results against the ionic strength, the Setschenow coefficient and the activity coefficients of the neutral species were determined. In pure water, the specific solubility is log10 \( S_{m 0}^{0} = \, {-} 1. 20 \, \pm \, 0.0 4 \) . To determine the activity coefficient of the charged species and the protonation constant at infinite dilution, the data were analyzed by different models, namely the Debye–Hückel type equation, the SIT (Specific ion Interaction Theory) and the Pitzer approach. The interaction coefficient of the deprotonated pyrithione species was determined [ε(Na+, PT?) = ?0.105 ± 0.002]. The protonation enthalpy was also determined, is slightly positive, and the protonation process is entropic in nature. At infinite dilution and T = 298.15 K, log10 K H0 = 4.620 ± 0.002, ΔG 0 = –26.4 ± 0.1 kJ·mol?1, ΔH 0 = 2.1 ± 0.5 kJ·mol?1 and TΔS 0 = 28.5 ± 0.5 kJ·mol?1. The electrochemical behavior of pyrithione was studied in NaCl solutions at T = 298.15 K. It was found that voltammetry can be used to study the binding ability of pyrithione towards metal cations. The results of this work are in agreement with literature findings and improve the knowledge of the chemistry of pyrithione in aqueous solutions.  相似文献   

18.
In order to obtain a clue to the antitumor mechanism of $\left[ {{\text{Me}}_{ 3} {\text{NH}}} \right]_{ 6} \left[ {{\text{H}}_{ 2} {\text{Mo}}_{ 1 2}^{\text{V}} {\text{O}}_{ 2 8} \left( {\text{OH}} \right)_{ 1 2} \left( {{\text{Mo}}^{\text{VI}} {\text{O}}_{ 3} } \right)_{ 4} } \right]$ ·2H2O (PM-17), the interaction of PM-17 with flavin mononucleotide (FMN) as a prosthetic group of the flavoprotein has been investigated by both polarographic analysis and isothermal titration calorimetry (ITC) technique at the physiological solution pH (7.5). The half-wave potential (?0.50 V vs. Ag/AgCl) of the d.c. polarogram for the quasi-reversible one-electron reduction of FMN was shifted by PM-17 toward a more positive potential with a resultant deviation from one-electron reduction to formally more than one-electron reduction waves. The PM-17 effect on the d.c. polarogram could be explained by a variety of FMN···(PM-17)n (n > 0) aggregates with multiple conformations which was supported by the thermodynamic parameters (ΔH = ?29.7 kJ mol?1, ΔS = ?28.2 J mol?1 K?1, ΔG = ?21.5 kJ mol?1, and number of FMN in the binding with PM-17 (N) = 0.053 at 20 °C) estimated by the ITC technique. A large conformational change of the FMN domain by the FMN···(PM-17)n aggregates is suggested to prevent the movement of the FMN centers into close proximity with nicotinamide adenine dinucleotide (NADH) with a resultant depression of the electron transport in NADH dehydrogenase.  相似文献   

19.
IntroductionZincisanessentialtraceelementtothelife .Manydiseasesarousedfromadeficiencyofzincelementhavere ceivedconsiderableattention .L α Aminoacidsarebasicunitsofproteins .L α Trytophanisoneoftheeightspeciesofaminoacidsindispensableforlife ,whichhastobeab sorbedfromfoodbecauseitcannotbesynthesizedinthehumanbody .InviewofthecomplexesofL α trytophanandessentialelementsasaddictiveswidelyusedinsuchfieldsasfoodstuff,medicineandcosmetic ,1 3theyhaveabroadenprospectforapplications .Briefly ,ab…  相似文献   

20.
The Pd(DAP)Cl2 complex, where DAP is 2,6-diaminopyridine, was synthesized and characterized. The stoichiometries and stability constants of the complexes formed between various biologically relevant ligands (amino acids, amides, DNA constituents, and dicarboxylic acids) and [Pd(DAP)(H2O)2]2+ were investigated at 25 °C and at constant 0.1 mol·dm?3 ionic strength. The concentration distribution diagrams of the various species formed were evaluated. A further investigation of the binding properties of the diaqua complex [Pd(DAP)(H2O)2]2+ with calf thymus DNA (CT-DNA) was investigated by UV–Vis spectroscopy. The intrinsic binding constants (K b) calculated from UV–Vis absorption studies is 1.04 × 103 mol·dm?3. The calculated (K b) value was found to be of lower magnitude than that of the classical intercalator EB (ethidium bromide) (K b = 1.23 (±0.07) × 105 mol·dm?3), suggesting an electrostatic and/or groove binding mode for the interaction with CT-DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号