首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Langevin Molecular Dynamics Simulations have been performed in order to understand thin film formation by impact of energetic clusters. The impact of Mo1024 clusters on a Mo surface is simulated at kinetic energies between 1 and 10 eV per atom. The results are in qualitative agreement with the experiments. Due to the high temperature induced locally at the impact zone, the method can be used to form compact, smooth, and strongly adhering thin films on room temperature substrates.  相似文献   

2.
Tzeng HF  Hung HP 《Electrophoresis》2005,26(11):2225-2230
A simple and rapid capillary electrophoretic method was developed for the simultaneous determination of thymidylate (TMP) and thymidine 5'-diphosphate (TDP) in enzyme assays without using radioactive-labeled substrates. Prior to electrophoretic separation, addition of acetonitrile and sodium chloride to the assay solution and brief centrifugation are recommended for the purpose of sample cleanup and sample stacking. The separation of micromolar TMP and TDP from millimolar adenosine 5'-triphosphate (ATP) was performed at 25 degrees C using sodium tetraborate as the background electrolyte. Under the optimal condition, a good separation with high efficiency was achieved in 6 min. Several parameters affecting the separation were studied, including the pH of electrolyte, the applied voltage, and acetonitrile-salt sample stacking. The fronting of the ATP peak resulting from the interference of magnesium ion in the enzyme assay buffer was suppressed by the addition of sodium ethylenediaminetetraacetate to the sample solution. Using deoxyadenylate as an internal standard, the linear range of the method was 5-200 microM, and the concentration limits of detection of TMP and TDP were 2.6 and 3.8 microM, respectively. Application of the proposed method for simultaneous determination of TMP and TDP in enzyme assays was demonstrated by the activity assays of thymidine kinase and thymidylate kinase from white spot syndrome virus. This is a sensitive, nonradioactive method for thymidine kinase and thymidylate kinase assays.  相似文献   

3.
The melting processes of different-sized copper nano-clusters supported on graphite (0001) plane are investigated by the molecular dynamics method. In this work, the melting point is predicted through the caloric curve. The simulation results show that the melting point of the supported copper nano-cluster is higher than that of the isolated one with the same Cu atoms. In the heating process, the copper nano-particle will adhere to the (0001) face of graphite with its (111) face. Pair analysis results show that the copper atoms close to the graphite can keep with order arrangement even when the temperature is higher than the melt point of the isolated nano-cluster.  相似文献   

4.
Enzyme-based hybrid hydrogels were prepared by covalently incorporating an adenylate kinase mutant, possessing two thiol groups, into HPMA copolymer- or PEG-based hydrogel structures. The nanoscale conformational change of enzyme, triggered by substrate recognition, translated into macroscopic motion of hydrogels.  相似文献   

5.
Adenylate kinase from E. coli (AKE) is studied with molecular dynamics. AKE undergoes large-scale motions of its Lid and AMP-binding domains when its open form closes over its substrates, AMP and Mg2+-ATP. The third domain, the Core, is relatively stable during closing. The resulting trajectory is analyzed with a principal component analysis method that decomposes the atom motions into modes ordered by their decreasing contributions to the total protein fluctuation. Simulations at 303 K (normal T) and 500 K (high T) reveal that at both temperatures the first three modes account for 70% of the total fluctuation. The residues that contribute the most to these three modes are concentrated in the Lid and AMP-binding domains. Analysis of the normal T modes indicates that the Lid and AMP-binding domains sample a broad distribution of conformations indicating that AKE is designed to provide its substrates with a large set of conformations. The high T results show that the Lid initially closes toward the Core. Subsequently, the Lid rotates to a new stable conformation that is different from what is observed in the substrate-bound AKE. These results are discussed in the context of experimental data that indicate that adenylate kinases do sample more than one conformational state in solution and that each of these conformational states undergoes substantial fluctuations. A pair of residues is suggested for labeling that would be useful for monitoring distance fluctuations by energy transfer experiments.  相似文献   

6.
The active-site dynamics of arginine deiminase (ADI) complexed with the arginine substrate are investigated with ns molecular dynamics for the wildtype ADI and several mutants. It is shown that the substrate is held in the active site by an extensive hydrogen bond network, which may be weakened by substitution of active-site residues. In addition, the initial step of the catalysis is explored in several truncated active-site models with density functional theory. Evidence is presented in support of the hypothesis that the nucleophilic attack of the ADI Cys thiol at the guanidino carbon of the substrate is initiated by substrate-mediated proton transfer to a His residue in the catalytic triad (Cys-His-Glu). In addition, the active-site residues are found to strongly influence the reaction profile, consistent with their important role in catalysis.  相似文献   

7.
合成受体的分子识别   总被引:5,自引:0,他引:5  
刘育  李莉 《有机化学》2001,21(11):850-861
系统地总结了我们近年来在超分子化学研究中的一些工作进展,着重介绍了一些合成受体(环糊精,冠醚,杯芳烃)的分子识别和组装研究。  相似文献   

8.
The formation of complexes between crown ethers and aklylammonium cations may, to some extent, be modelled using standard molecular mechanics methods and an appropriate charge distribution scheme. Monocyclic crown ethers may be developed to give chromoionophores suitable for use in optical fibre based ion sensors. The incorporation of two crown ether systems into polycyclic host molecules which show highly selective complexation of guest bis-alkylammonium cations is described. The scope of these ditopic receptors may be extended by using metalloporphyrins in place of one or both of the crown ether binding sites.  相似文献   

9.
10.
A recent major advance in the field of mass spectrometry in the biomolecular sciences is represented by the study of the supramolecular interactions among two or more partners in the gas phase. A great deal of chemistry and most of biochemistry concerns molecular interactions taking place in solution. The electrospray technique, which allows direct sampling from solution, and soft ionization of the solute without deposition into the analyte of large amounts of energy, guarantees in many cases the survival of noncovalent bondings and, hence, the direct analysis of the supramolecular complexes present in the condensed phase. The proper preparation of the solution to be studied and also the expert and accurate setting and use of the instrumental parameters are the prerequisites for gaining results as to the specific interactions between, for instance, a protein conformationally modified by its specific metal ion, eventually, and a ligand molecule. The analysis of the charge state of the protein itself and of the modifications of the complex integrity by activating collisions are also methods for studying the biomolecule-molecule interactions. Accordingly, this new mass spectrometric approach to the supramolecular chemistry, which could be also defined as 'supramolecular mass spectrometry', allows the study of ion-protein, protein-protein, protein-ligand and DNA-drug interactions. Chiral recognition can also be performed in the gas phase, studying by electrospray mass spectrometry the fragmentation of diastereomeric complex ions. Not the least, a deep insight can also be obtained into the formation and nature of inclusion complexes like those formed with crown ethers, cyclodextrins and calixarenes as host molecules. All these topics are treated to a certain extent in this special feature article.  相似文献   

11.
12.
Pyridoxal 5'-phosphate-dependent aminotransferases reversibly catalyzes the transamination reaction in which the alpha-amino group of amino acid 1 is transferred to the 2-oxo acid of amino acid 2 (usually 2-oxoglutarate) to produce the 2-oxo acid of amino acid 1 and amino acid 2 (glutamate). An aminotransferase must thus be able to recognize and bind two kinds of amino acids (amino acids 1 and 2), the side chains of which are different in shape and properties, from among many other small molecules. The dual substrate recognition mechanism has been discovered based on three-dimensional structures of aromatic amino acids, histidinol phosphate, glutamine:phenylpyruvate, acetylornithine, and branched-chain amino acid aminotransferases. There are two representative strategies for dual substrate recognition. An aromatic amino acid aminotransferase prepares charged and neutral pockets for acidic and aromatic side chains, respectively, at the same place by a large-scale rearrangement of the hydrogen-bond network caused by the induced fit. In a branched-chain aminotransferase, the same hydrophobic cavity implanted with hydrophilic sites accommodates both hydrophobic and acidic side chains without side-chain rearrangements of the active-site residues, which is reminiscent of the lock and key mechanism. Dual substrate recognition in other aminotransferases is attained by combining the two representative methods.  相似文献   

13.
Theoretical study of the mechanisms of substrate recognition by catalase   总被引:2,自引:0,他引:2  
A variety of theoretical methods including classical molecular interaction potentials, classical molecular dynamics, and activated molecular dynamics have been used to analyze the substrate recognition mechanisms of peroxisomal catalase from Saccharomyces cerevisiae. Special attention is paid to the existence of channels connecting the heme group with the exterior of the protein. On the basis of these calculations a rationale is given for the unique catalytic properties of this enzyme, as well as for the change in enzyme efficiency related to key mutations. According to our calculations the water is expected to be a competitive inhibitor of the enzyme, blocking the access of hydrogen peroxide to the active site. The main channel is the preferred route for substrate access to the enzyme and shows a cooperative binding to hydrogen peroxide. However, the overall affinity of the main channel for H(2)O(2) is only slightly larger than that for H(2)O. Alternative channels connecting the heme group with the monomer interface and the NADP(H) binding site are detected. These secondary channels might be important for product release.  相似文献   

14.
The position of a graphene nanoribbon on a solid substrate allows the chemical modification of only one of the nanoribbon sides. A method was proposed that enables the chemical modification of the other side, too. It was numerically modeled how a nanoribbon separated from a substrate rolls up into a roll and how the roll unrolls on a flat substrate. The dependences of the number of coils and the radii of rolls forming by hydrogenation on the nanoribbon length and width were determined.  相似文献   

15.
Absolute 18-crown-6 (18C6) affinities of five amino acids (AAs) are determined using guided ion beam tandem mass spectrometry techniques. The AAs examined in this work include glycine (Gly), alanine (Ala), lysine (Lys), histidine (His), and arginine (Arg). Theoretical electronic structure calculations are performed to determine stable geometries and energetics for neutral and protonated 18C6 and the AAs as well as the proton bound complexes comprised of these species, (AA)H(+)(18C6). The proton affinities (PAs) of Gly and Ala are lower than the PA of 18C6, whereas the PAs of Lys, His, and Arg exceed that of 18C6. Therefore, the collision-induced dissociation (CID) behavior of the (AA)H(+)(18C6) complexes differs markedly across these systems. CID of the complexes to Gly and Ala produces H(+)(18C6) as the dominant and lowest energy pathway. At elevated energies, H(+)(AA) was produced in competition with H(+)(18C6) as a result of the relatively favorable entropy change in the formation of H(+)(AA). In contrast, CID of the complexes to the protonated basic AAs results in the formation of H(+)(AA) as the only direct CID product. H(+)(18C6) was not observed, even at elevated energies, as a result of unfavorable enthalpy and entropy change associated with its formation. Excellent agreement between the measured and calculated (AA)H(+)-18C6 bond dissociation energies (BDEs) is found with M06 theory for all complexes except (His)H(+)(18C6), where theory overestimates the strength of binding. In contrast, B3LYP theory significantly underestimates the (AA)H(+)-18C6 BDEs in all cases. Among the basic AAs, Lys exhibits the highest binding affinity for 18C6, suggesting that the side chains of Lys residues are the preferred binding site for 18C6 complexation in peptides and proteins. Gly and Ala exhibit greater 18C6 binding affinities than Lys, suggesting that the N-terminal amino group provides another favorable binding site for 18C6. Trends in the 18C6 binding affinities among the five AAs examined here exhibit an inverse correlation with the polarizability and proton affinity of the AA. Therefore, the ability of the N-terminal amino group to compete for 18C6 complexation is best for Gly and should become increasing less favorable as the size of the side chain substituent increases.  相似文献   

16.
Dendrimer technology has enabled us to build macromolecules with nanosized defined structures. By introducing unsymmetrical patched structures in dendrimers, sophisticated artificial receptors exhibiting nanoscale substrate recognition can be obtained. In this review article, our recent studies on molecular recognition by porphyrin dendrimers with patched structures are summarized. Three topics are presented: (1) oligopeptide-patched dendrimers as a nanoscale receptor of cytochrome c protein; (2) pocket dendrimers as a nanoscale receptor for bimolecular guest accommodation; and (3) energy transfer in unsymmetrical dendrimers. These dendrimers nicely mimic proteins and enzymes, and also act as photofunctional artificial receptors, in which porphyrin’s strong photoabsorption and intense fluorescence signals can respond sensitively to the substrate binding.  相似文献   

17.
We report a molecular dynamics simulation study of a zinc-protease--gelatinase A or MMP2--which is a major target for drug design, being involved in tumor metastasis and other degenerative diseases. Two structures have been employed as starting conditions, one based on the crystal of multi-domain proMMP2, the other consisting of the catalytic domain only. The overall fold of the two models is maintained over the 1260 ps trajectory, enabling us to analyze correlations of fluctuations among domains, and to observe the presence of correlations within the catalytic domain in the multi-domain enzyme only, hence due to the presence of hemopexin and fibronectin domains. In the multi-domain protein, two cavities are conserved over the trajectory, one of them pointing to a key region, a crevice surrounding the catalytic zinc. The other one is localized across the three domains of the MMP2 metalloproteinase. These areas are partially covered by the propeptide in the crystal structure of proMMP2. We propose a model of MMP2-collagen interaction that involves both identified cavities and takes into account the inter/intra domain cross-correlations.  相似文献   

18.
The discovery of molecules that bind tightly and selectively to desired proteins continues to drive innovation at the interface of chemistry and biology. This paper describes the binding of human insulin by the synthetic receptor cucurbit[7]uril (Q7) in vitro. Isothermal titration calorimetry and fluorescence spectroscopy experiments show that Q7 binds to insulin with an equilibrium association constant of 1.5 × 10(6) M(-1) and with 50-100-fold selectivity versus proteins that are much larger but lack an N-terminal aromatic residue, and with >1000-fold selectivity versus an insulin variant lacking the N-terminal phenylalanine (Phe) residue. The crystal structure of the Q7·insulin complex shows that binding occurs at the N-terminal Phe residue and that the N-terminus unfolds to enable binding. These findings suggest that site-selective recognition is based on the properties inherent to a protein terminus, including the unique chemical epitope presented by the terminal residue and the greater freedom of the terminus to unfold, like the end of a ball of string, to accommodate binding. Insulin recognition was predicted accurately from studies on short peptides and exemplifies an approach to protein recognition by targeting the terminus.  相似文献   

19.
Absolute 18-crown-6 (18C6) affinities of nine protonated peptidomimetic bases are determined using guided ion beam tandem mass spectrometry techniques. The bases (B) included in this work are mimics for the n-terminal amino group and the side chains of the basic amino acids, i.e., the favorable sites for binding of 18C6 to peptides and proteins. Isopropylamine is chosen as a mimic for the n-terminal amino group, imidazole and 4-methylimidazole are chosen as mimics for the side chain of histidine (His), 1-methylguanidine is chosen as a mimic for the side chain of arginine (Arg), and several primary amines including methylamine, ethylamine, n-propylamine, n-butylamine, and 1,5-diamino pentane as mimics for the side chain of lysine (Lys). Theoretical electronic structure calculations are performed to determine stable geometries and energetics for neutral and protonated 18C6 and the peptidomimetic bases, as well as the proton bound complexes comprised of these species, (B)H(+)(18C6). The measured 18C6 binding affinities of the Lys side chain mimics are larger than the measured binding affinities of the mimics for Arg and His. These results suggest that the Lys side chains should be the preferred binding sites for 18C6 complexation to peptides and proteins. Present results also suggest that competition between Arg or His and Lys for 18C6 is not significant. The mimic for the n-terminal amino group exhibits a measured binding affinity for 18C6 that is similar to or greater than that of the Lys side chain mimics. However, theory suggests that binding to n-terminal amino group mimic is weaker than that to all of the Lys mimics. These results suggest that the n-terminal amino group may compete with the Lys side chains for 18C6 complexation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号