首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Time-resolved continuous wave EPR signals of two consecutive radical pairs are found in the linear response limit. Numerical simulations of the EPR observables visualize two characteristic features. First, there is a shift of a phase of quantum beats of the EPR line intensities of the secondary pairs. This phase shift originates from a certain time delay in a formation of the secondary pairs (due to time spent by electron spins in the primary radical pair state) and from the difference of the spin dynamics in the secondary and the primary pairs. This phase shift might be detected even in the cases when the primary radical pair has the very short lifetime and, as a result, the EPR spectrum of the primary pair cannot be detected directly. Second, for two consecutive radical pairs, there might be a pronounced non-equality of intensities of EPR lines at the EPR resonance frequencies of the secondary pairs. Indeed, in a case of two consecutive pairs there is the additional mechanism which induces the non-equality of the EPR line intensities: a polarization transfer from the primary to secondary pair and the change of a electron spin quantization axis when a primary radical pair transforms to a secondary radical pair. A possibility to detect experimentally these features of the EPR signals when studying consecutive charge separated states in photosynthetic reaction centers is discussed briefly.  相似文献   

2.
We discuss recent studies, using the quantum ensemble projector Monte Carlo (EPMC) method, of theoretical models of conducting polymers. Our focus is on the consequences of incorporating direct electron-electron interactions into the “standard” electron-phonon interaction models. Among the observables we examine one energetics of purely dimerized ground states, single solitons, soliton pairs, averaged spin and charge distributions, and local correlation functions.  相似文献   

3.
Electron paramagnetic resonance (EPR) is used to identify the next nearest neighbour Co2+ pairs coupled by spin–spin interaction in Co‐doped ZnO single crystals grown by the hydrothermal technique. These dimer centers are described by a spin Hamiltonian with exchange coupling terms written as interaction between identical effective spins Seff = 1/2 of the lowest ground state Kramers doublets of the two Co2+ ions. The exchange parameters of weakly ferromagnetically coupled next nearest neighbor Co2+ pairs are estimated. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We investigate the quantum speed limit (QSL) time of an electronic spin coupled to a bath of nuclear spins. We consider three types of initial states with different correlations between the system and bath, i.e., quantum correlation, classical correlation, and no any correlation. Interestingly, we show that the QSL times of the central spin for these three types of initial correlations are identical when the couplings are homogeneous. However, it is remarkable different for inhomogenous couplings. The QSL time of the central spin is sensitive to the initial states, the average coupling strength, the distribution of the couplings between the system and bath and the number of the nuclear spins in the bath. Furthermore, we find that the coherence in the initial state has significant influences on the QSL time of the system, and can lead to the increase of QSL time for homogeneous couplings.  相似文献   

5.
The concept of introducing an additional, stable paramagnetic species into photosynthetic reaction centres to increase the information content of their spin polarized transient EPR spectra is investigated theoretically. The light-induced electron transfer in such systems generates a series of coupled three-spin states consisting of sequential photoinduced radical pairs coupled to the stable spin which acts as an “observer”. The spin polarized transient EPR spectra are investigated using the coupled three-spin system P+IQ A in pre-reduced bacterial reaction centres as a specific example which has been studied experimentally. The evolution of the spin system and the spin polarized EPR spectra of P+IQ A and Q A following recombination of the radical pair (P = primary donor, I = primary acceptor, QA = quinone acceptor) are calculated numerically by solving the equations of motion for the density matrix. The net polarization of the observer spin is also calculated analytically by perturbation theory for the case of a single, short-lived, charge-separated state. The result bears a close resemblance to the chemically induced nuclear polarization (CIDNP) generated in photolysis reactions in which a nuclear spin plays the role of the observer interacting with the radical pair intermediates. However, because the Zeeman frequencies of the three electron spins involved are usually quite similar, the polarization of the electron observer spin in strong magnetic fields can reflect features of the CIDNP effect in both, high and low magnetic fields. The dependence of the quinone spin polarization on the exchange couplings in the three-spin system is investigated by numerical simulations, and it is shown that the observed emissive polarization pattern is compatible with either sign, positive or negative, for a range of exchange couplings, JPI, in the primary pair. The microwave frequency and orientation dependence of the spectra are discussed as two of several possible criteria for determining the sign of JPI.  相似文献   

6.
This paper reports on the results of measurements of the magnetic susceptibility, heat capacity, neutron scattering, muon spin relaxation, and electron paramagnetic resonance in Cu3B2O6 for the study of the ground state of the spin system of this compound. The results obtained suggest that, at a temperature of 10 K, the spin subsystem of the crystal, which consists of single spins and clusters of pairs and fours of spins interacting with one another, undergoes a transition to a state representing a superposition of the singlet (for clusters) and magnetically ordered (for single spins) states.  相似文献   

7.
The schematic shell model without residual interaction (SSM) assumes the same excitation energy for all spins in each particle-hole configuration multiplet. In 208Pb, more than forty states are known to contain almost the full strength of a single particle-hole configuration. The experimental excitation energy for a state with a certain spin differs from the energy predicted by the SSM by ?0.2 to +0.6 MeV. The multiplet splitting is calculated with the surface delta interaction; it corresponds to the diagonal matrix element of the residual interaction in the SSM. For states containing more than 90% strength of a certain configuration and for the centroid of several completely observed configurations, the calculated multiplet splitting often approximates the experimental excitation energy within 30 keV. The strong mixing within some pairs of states containing the full strengths of two configurations is explained.  相似文献   

8.
Electron and nuclear spins are very promising candidates to serve as quantum bits (qubits) for proposed quantum computers, as the spin degrees of freedom are relatively isolated from their surroundings and can be coherently manipulated, e.g., through pulsed electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR). For solid-state spin systems, impurities in crystals based on carbon and silicon in various forms have been suggested as qubits, and very long relaxation rates have been observed in such systems. We have investigated a variety of these systems at high magnetic fields in our multifrequency pulsed EPR/ENDOR (electron nuclear double resonance) spectrometer. A high magnetic field leads to large electron spin polarizations at helium temperatures, giving rise to various phenomena that are of interest with respect to quantum computing. For example, it allows the initialization of both the electron spin as well as hyperfine-coupled nuclear spins in a well-defined state by combining millimeter and radio-frequency radiation. It can increase the T 2 relaxation times by eliminating decoherence due to dipolar interaction and lead to new mechanisms for the coherent electrical readout of electron spins. We will show some examples of these and other effects in Si:P, SiC:N and nitrogen-related centers in diamond.  相似文献   

9.
Entanglement, the Einstein–Podolsky–Rosen (EPR) paradox and Bell’s failure of local-hiddenvariable (LHV) theories are three historically famous forms of “quantum nonlocality”. We give experimental criteria for these three forms of nonlocality in multi-particle systems, with the aim of better understanding the transition from microscopic to macroscopic nonlocality. We examine the nonlocality of N separated spin J systems. First, we obtain multipartite Bell inequalities that address the correlation between spin values measured at each site, and then we review spin squeezing inequalities that address the degree of reduction in the variance of collective spins. The latter have been particularly useful as a tool for investigating entanglement in Bose–Einstein condensates (BEC). We present solutions for two topical quantum states: multi-qubit Greenberger–Horne–Zeilinger (GHZ) states, and the ground state of a two-well BEC.  相似文献   

10.
The ground state and phase transition of Co2Cl(OH)3 were investigated by Monte Carlo simulation. This compound is a magnet, with a pyrochlore structure distorted along one axis. The magnetic structure at low temperatures consists of coexisting ferromagnetism and random spin, according to experiments. However, the formation mechanism of the coexistence and the interaction between the spins were unclear. We assumed an anisotropic Ising model and examined the ground state by multicanonical Monte Carlo simulation. In a nearest neighbor model, the ground states were highly degenerated. Almost all of the states were spin glass states, but a few of the states were ferromagnetic. The latter magnetic states were ferromagnetic at triangular layers and two in-one out random state at Kagome layers. The latter states should be stabilized if weak ferromagnetic interactions exist between second nearest neighbor spins and correspond to the states reported by the experiments. This expectation was confirmed by simulation.  相似文献   

11.
Spin tomographic symbols of qudit states and spin observables are studied. Spin observables are associated with the functions on a manifold whose points are labeled by the spin projections and sphere S 2 coordinates. The star-product kernel for such functions is obtained in an explicit form and connected with the Fourier transform of characters of the SU(2) irreducible representation. The kernels are shown to be in close relation to the Chebyshev polynomials. Using specific properties of these polynomials, we establish the recurrence relation between the kernels for different spins. Employing the explicit form of the star-product kernel, a sum rule for Clebsch–Gordan and Racah coefficients is derived. Explicit formulas are obtained for the dual tomographic star-product kernel as well as for intertwining kernels which relate spin tomographic symbols and dual tomographic symbols.  相似文献   

12.
The quantum entanglement,discord,and coherence dynamics of two spins in the model of a spin coupled to a spin bath through an intermediate spin are studied.The effects of the important physical parameters including the coupling strength of two spins,the interaction strength between the intermediate spin and the spin bath,the number of bath spins and the temperature of the system on quantum coherence and correlation dynamics are discussed in different cases.The frozen quantum discord can be observed whereas coherence does not when the initial state is the Bell-diagonal state.At finite temperature,we find that coherence is more robust than quantum discord,which is better than entanglement,in terms of resisting the influence of environment.Therefore,quantum coherence is more tenacious than quantum correlation as an important resource.  相似文献   

13.
The current theory of three-pulse electron double resonance (PELDOR) has been generalized to the case, when paramagnetic particles (spin labels) in pairs or groups have the electron paramagnetic resonance (EPR) spectra, which overlap essentially or coincide. The PELDOR signal modulation induced by the dipole–dipole interaction between paramagnetic spin ½ particles in pairs embedded in disordered systems has been analyzed comprehensively. It has been shown that the PELDOR signal contains additional terms in contrast to the situation considered in the current theory, when the EPR spectra of the spin labels in the pairs do not overlap. In disordered systems, the pairs of spin labels have the characteristic dipolar interaction frequency. According to the current theory for pairs of spin labels, the PELDOR signal reveals the modulation with this characteristic frequency. The additional terms, which are obtained in this work, do not change the modulation frequency of the PELDOR signal for pairs of spin labels. However, these additional terms should be taken into account when analyzing the amplitude of the PELDOR signal and the amplitude of the modulation of the PELDOR signal. The consistent approach to treating the PELDOR data for the groups containing three or more spin labels has been outlined on the basis of the results for pairs of spin labels. It has been also analyzed how the spin flips and molecular motion or molecular isomerization can affect the manifestation of the interaction between the spin labels in PELDOR experiments. PELDOR experiments for the stable biradicals (biradicals I containing 1-oxyl-2,2,5,5-tetramethylpyrroline-3-yl spin labels and biradicals II containing 3-imidazoline spin labels) have been performed. The results have been interpreted within the theory developed in this work.  相似文献   

14.
We introduce a variational method for the approximation of ground states of strongly interacting spin systems in arbitrary geometries and spatial dimensions. The approach is based on weighted graph states and superpositions thereof. These states allow for the efficient computation of all local observables (e.g., energy) and include states with diverging correlation length and unbounded multiparticle entanglement. As a demonstration, we apply our approach to the Ising model on 1D, 2D, and 3D square lattices. We also present generalizations to higher spins and continuous-variable systems, which allows for the investigation of lattice field theories.  相似文献   

15.
We report progress with an old problem in magnetic resonance -- that of the exponential scaling of simulation complexity with the number of spins. It is demonstrated below that a polynomially scaling algorithm can be obtained (and accurate simulations performed for over 200 coupled spins) if the dimension of the Liouville state space is reduced by excluding unimportant and unpopulated spin states. We found the class of such states to be surprisingly wide. It actually appears that a majority of states in large spin systems are not essential in magnetic resonance simulations and can safely be dropped from the state space. In restricted state spaces the spin dynamics simulations scale polynomially. In cases of favourable interaction topologies (sparse graphs, e.g. in protein NMR) the asymptotic scaling is linear, opening the way to direct fitting of molecular structures to experimental spectra.  相似文献   

16.
A novel strategy is discussed using site directed spin labelling to study the electron transfer process in photosynthetic reaction centres. An algorithm is presented for numerical simulations of the time resolved EPR spectra of radical pair states in the presence of an observer spin label. This algorithm accounts for spin dynamics, charge recombination and relaxation processes. It is shown that satisfactory agreement between experimental and simulated EPR spectra of the first stabilized radical pair state in photosystem I is achieved for various microwave frequencies. Transient EPR spectra for the radical pair state P?+Q?- in photosystem I were simulated for various distances and positions of the observer spin label with respect to the acceptor quinone molecule. It is shown that distances up to more than 20 Å give rise to observable changes in the transient EPR spectra. Both the additional spin-spin coupling between the quinone radical and the label and the polarization transfer processes contribute to the changes. Furthermore, the shape and intensity of the EPR spectrum of the spin label is altered by the coupling with the radical pair spins for distances up to 25 Å. Experiments on site directed spin labelled photosystem I are thus expected to provide valuable information on the dynamics of electron transfer in photosystem I.  相似文献   

17.
The possibility that pairs of quarks will form diquark clusters in the regime above deconfinement transition for hadron matter at finite density is revisited. Here we present the results on the diquark-diquark (dq-dq) interaction in the framework of constituent quark model taking account of spin, isospin and color degrees of freedom in the spirit of generalized Pauli principle. By constructing the appropriate spin and color states of the dq-dq clusters we compute the expectation values of the interaction Hamiltonian involving pairwise quark—quark interaction. We find that the effective interaction between two diquark clusters is quite sensitive to different configurations characterized by color and spin states, obtained after the coupling of two diquark states. The value of the coupling parameter for a particular color—spin state, i.e., -3, 1 is compared to the one obtained earlier by Donoghue and Sateesh,Phys. Rev. D38, 360 (1988) based on the effective Φ4-theory. This new value of λ derived for different color-spin dq-dq states, may lead to several important implications in the studies of diquark star and diquark gas.  相似文献   

18.
We study the finite temperature property of a model on two dimensional square lattices with two Ising spins at each lattice site by Monte Carlo simulations. When those Ising spins at a lattice site are parallel the site is said to be in the high-spin state (HS), while when they are antiparallel the site is said to be in the low-spin state (LS). Throughout the study, the energy of HS is presumed to be higher than that of LS. Two Ising spins at each site are added to form a total spin, which interacts with its nearest neighbour total spins via spin-spin couplings. The spin-phonon coupling also is introduced via harmonic springs between nearest neighbour sites with spring constants and equilibrium distances depending on the spin states of the sites involved. In this system, we investigate the feature of transitions between LS and HS (to be called low/high spin transition (LHST)) by varying the temperature. As for the ferromagnetic interaction between total spins, the second order phase transition: pure HSmixed state of HS and LS is possible to occur in a pure spin system, as is expected from mean field calculations. The role of lattice distortions by the change of lattice spacings is shown to be essential for LHST: pure LS(pure)HS. In the model investigated, there appears an indication of the strong first order phase transition which reveals a conspicuous hysteresis.  相似文献   

19.
Dipole-dipole interactions between distant paramagnetic centers (PCs) where at least one PC has spinS>1/2 are examined. The results provide a basis for the application of pulsed electron-electron double resonance method to the measurement of distances between PCs involving high-spin species. A projection operator technique based on spectral decomposition of the secular Hamiltonian is used to calculate electron paramagnetic resonance (EPR) line splitting caused by the dipole coupling. This allows calculation of operators projecting an arbitrary wave function onto high-spin PC eigenstates when the eigenvectors of the Hamiltonian are not known. The effective spin vectors — that is, the expectation values for vector spin operators in the PC eigenstates — are calculated. The dependence of these effective spin vectors on the external magnetic field is calculated. There is a qualitative difference between pairs having at least one integer spin (non-Kramers PC) and pairs of two half-integer (Kramers PC) spins. With the help of these effective spin vectors, the dipolar line shape of EPR lines is calculated. Analytical relations are obtained for PCs with spinS=1/2 and 1. The dependence of Pake patterns on variations of zero-field splitting, Zeeman energy, temperature and dipolar coupling are illustrated.  相似文献   

20.
With the consideration of three-body interaction, dynamics of pairwise entanglement in spin chains is studied. The dependence of pairwise entanglement dynamics on the type of coupling, and distance between the spins is analyzed in a finite chain for different initial states. It is found that, for an Ising chain, three-body interactions are not in favor of preparing entanglement between the nearest neighbor spins, while three-body interactions are favorable for creating entanglement between remote spins from a separable initial state. For an isotropic Heisenberg chain, the pairwise concurrence will decrease when three-body interactions are considered both for a separable initial state and for a maximally entangled initial state, however, three-body interactions will retard the decay of the concurrence in an Ising chain when the initial state takes the maximally entangled state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号