首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider m spinless Bosons distributed over l degenerate single-particle states and interacting through a k-body random interaction with Gaussian probability distribution (the Bosonic embedded k-body ensembles). We address the cases of orthogonal and unitary symmetry in the limit of infinite matrix dimension, attained either as l→∞ or as m→∞. We derive an eigenvalue expansion for the second moment of the many-body matrix elements of these ensembles. Using properties of this expansion, the supersymmetry technique, and the binary correlation method, we show that in the limit l→∞ the ensembles have nearly the same spectral properties as the corresponding Fermionic embedded ensembles. Novel features specific for Bosons arise in the dense limit defined as m→∞ with both k and l fixed. Here we show that the ensemble is not ergodic and that the spectral fluctuations are not of Wigner-Dyson type. We present numerical results for the dense limit using both ensemble unfolding and spectral unfolding. These differ strongly, demonstrating the lack of ergodicity of the ensemble. Spectral unfolding shows a strong tendency toward picket-fence-type spectra. Certain eigenfunctions of individual realizations of the ensemble display Fock-space localization.  相似文献   

2.
Onsager’s ergodic point vortex (sub-)ensemble is studied for N vortices which move on the 2-sphere \(\mathbb{S}^{2}\) with randomly assigned circulations, picked from an a-priori distribution. It is shown that the typical point vortex distributions obtained from the ensemble in the limit N→∞ are special solutions of the Euler equations of incompressible, inviscid fluid flow on \(\mathbb{S}^{2}\). These typical point vortex distributions satisfy nonlinear mean-field equations which have a remarkable resemblance to those obtained from the Miller-Robert theory. Conditions for their perfect agreement are stated. Also the non-random limit, when all vortices have circulation 1, is discussed in some detail, in which case the ergodic and holodic ensembles are shown to be inequivalent.  相似文献   

3.
New Gaussian matrix ensembles, with arbitrary centroids and variances for the matrix elements, are defined as modifications of the three standard ones—GOE, GUE and GSE. The average density and two-point correlation function are given in the general case in terms of the corresponding Stieltjes transforms, first used by Pastur for the density. It is shown for the centroid-modified ensemble K + αH that when the operator K preserves the underlying symmetries of the standard ensemble H, then, as the magnitude of α grows, the transition of the fluctuations to those of H is very rapid and discontinuous in the limit of asymptotic dimensionality. Corresponding results are found for other ensembles. A similar Dyson result for the effects of the breaking of a model symmetry on the fluctuations is generalized to any model symmetry, as well as to the fundamental symmetries such as time-reversal invariance.  相似文献   

4.
This paper shows for a general class of statistical mechanical models that when the microcanonical and canonical ensembles are nonequivalent on a subset of values of the energy, there often exists a generalized canonical ensemble that satisfies a strong form of equivalence with the microcanonical ensemble that we call universal equivalence. The generalized canonical ensemble that we consider is obtained from the standard canonical ensemble by adding an exponential factor involving a continuous function g of the Hamiltonian. For example, if the microcanonical entropy is C2, then universal equivalence of ensembles holds with g taken from a class of quadratic functions, giving rise to a generalized canonical ensemble known in the literature as the Gaussian ensemble. This use of functions g to obtain ensemble equivalence is a counterpart to the use of penalty functions and augmented Lagrangians in global optimization. linebreak Generalizing the paper by Ellis et al. [J. Stat. Phys. 101:999–1064 (2000)], we analyze the equivalence of the microcanonical and generalized canonical ensembles both at the level of equilibrium macrostates and at the thermodynamic level. A neat but not quite precise statement of one of our main results is that the microcanonical and generalized canonical ensembles are equivalent at the level of equilibrium macrostates if and only if they are equivalent at the thermodynamic level, which is the case if and only if the generalized microcanonical entropy s–g is concave. This generalizes the work of Ellis et al., who basically proved that the microcanonical and canonical ensembles are equivalent at the level of equilibrium macrostates if and only if they are equivalent at the thermodynamic level, which is the case if and only if the microcanonical entropy s is concave.  相似文献   

5.
We extend the recent study of the k-body embedded Gaussian ensembles by L. Benet, T. Rupp, and H. A. Weidenmüller (2001, Benet, Phys. Rev. Lett.87, 101601-1 and 2001, Ann. Phys. (N.Y.)292, 67) and by T. Asaga, L. Benet, T. Rupp, and H. A. Weidenmüller (cond-mat/0107363 and cond-mat/0107364). We show that central results of these papers can be derived directly from the symmetry properties of both the many-particle states and the random k-body interaction. We offer new insight into the structure of the matrix of second moments of the embedded ensemble and of the supersymmetry approach. We extend the concept of the embedded ensemble and define it purely group-theoretically.  相似文献   

6.
Consider fixed and bounded trace Gaussian orthogonal, unitary and symplectic ensembles, closely related to Gaussian ensembles without any constraint. For three restricted trace Gaussian ensembles, we prove universal limits of correlation functions at zero and at the edge of the spectrum edge. Our argument also applies to restricted trace ensembles with monomial potentials. In addition, by using the universal result in the bulk for fixed trace Gaussian unitary ensemble, which has been obtained by Götze and Gordin, we also prove the universal limits of correlation functions everywhere in the bulk for bounded trace Gaussian unitary ensemble.  相似文献   

7.
《Nuclear Physics B》2005,730(3):253-299
We solve the complex extension of the chiral Gaussian symplectic ensemble, defined as a Gaussian two-matrix model of chiral non-Hermitian quaternion real matrices. This leads to the appearance of Laguerre polynomials in the complex plane and we prove their orthogonality. Alternatively, a complex eigenvalue representation of this ensemble is given for general weight functions. All k-point correlation functions of complex eigenvalues are given in terms of the corresponding skew orthogonal polynomials in the complex plane for finite-N, where N is the matrix size or number of eigenvalues, respectively. We also allow for an arbitrary number of complex conjugate pairs of characteristic polynomials in the weight function, corresponding to massive quark flavours in applications to field theory. Explicit expressions are given in the large-N limit at both weak and strong non-Hermiticity for the weight of the Gaussian two-matrix model. This model can be mapped to the complex Dirac operator spectrum with non-vanishing chemical potential. It belongs to the symmetry class of either the adjoint representation or two colours in the fundamental representation using staggered lattice fermions.  相似文献   

8.
The main purpose of this work is to elucidate whether there are significant differences in the local fluctuation properties between two-body (TBRE) and orthogonal (OE) ensembles of random matrices. Emphasis is put on the validity of ergodic properties, and results obtained by numerical means are discussed from that point of view. Spectral and ensemble averaging procedures are compared. All the local properties studied show compatibility between TBRE and OE results, and no significant evidence of inconsistency of theoretical predictions and experimental data is found.  相似文献   

9.
D. Ronis  I. Oppenheim 《Physica A》1977,86(3):475-489
Nonlinear equations governing the relaxation of some macroscopic quantities, a(r,t) are derived using Kubo's response theory, in isolated inhomogeneous systems. The resulting equations contain microcanonical time correlation functions. It is shown how to express these in terms of arbitrary ensemble correlation functions and correction arising from their infinite time behaviour are discussed. In addition it is shown that the concept of local equilibrium must be modified somewhat.  相似文献   

10.
We present a complete analytical solution of a system of Potts spins on a random k-regular graph in both the canonical and microcanonical ensembles, using the Large Deviation Cavity Method (LDCM). The solution is shown to be composed of three different branches, resulting in a non-concave entropy function. The analytical solution is confirmed with numerical Metropolis and Creutz simulations and our results clearly demonstrate the presence of a region with negative specific heat and, consequently, ensemble inequivalence between the canonical and microcanonical ensembles.  相似文献   

11.
David Ronis 《Physica A》1981,107(1):25-47
Kawasaki's mode coupling theory [Ann. Phys. 61 (1970) 1] is used to compute time correlation functions of the form 〈Ak0(t0) … Akn(tn)〉, where Ak(t) represents some slowly varying quantity. The Gaussian and Bare Vertex approximations are made, thus yielding extremely simple expressions for these higher order correlation functions. These do not contain any bare transport coefficients and suggest relatively simple tests by which the theory could be checked. Examples relating to light scattering in nonequilibrium systems and the hydrodynamics of simple fluids are presented.  相似文献   

12.
We study the fluctuations of eigenvalues from a class of Wigner random matrices that generalize the Gaussian orthogonal ensemble. We begin by considering an n×n matrix from the Gaussian orthogonal ensemble (GOE) or Gaussian symplectic ensemble (GSE) and let x k denote eigenvalue number k. Under the condition that both k and n?k tend to infinity as n→∞, we show that x k is normally distributed in the limit. We also consider the joint limit distribution of eigenvalues $(x_{k_{1}},\ldots,x_{k_{m}})$ from the GOE or GSE where k 1, n?k m and k i+1?k i , 1≤im?1, tend to infinity with n. The result in each case is an m-dimensional normal distribution. Using a recent universality result by Tao and Vu, we extend our results to a class of Wigner real symmetric matrices with non-Gaussian entries that have an exponentially decaying distribution and whose first four moments match the Gaussian moments.  相似文献   

13.
The two-point correlation function for complex spectra described by the Gaussian Orthogonal Ensemble (GOE) is calculated, and its essential simplicity displayed, by an elementary procedure which derives from orthogonal invariance and the dominance of intrinsic binary correlations. The resultant function is used for an approximate calculation of the standard fluctuation measures. Good agreements are found with exact results where these are available, this incidentally demonstrating that the measures are, for the most part, two-point measures. It is shown that they vary slowly over the spectrum, a result which is in agreement both with experiment and with Monte Carlo calculations. The same technique can be used for higher-order correlation functions, and possibly also for more complicated ensembles in which case the results would be relevant to the question why GOE fluctuations give a good account of experimental results.  相似文献   

14.
We present an alternative formulation of Equilibrium Statistical Mechanics which follows the method based on the maximum statistical entropy principle in Information Theory combined with the use of Massieu–Planck functions. The different statistical ensembles are obtained by a suitable restriction of the whole set of available microstates. The main advantage is that all of the equations that relate the average values with derivatives of the partition function are formally identical in the different ensembles. Moreover, Einstein's fluctuation formula is also derived within the same framework. This provides a suitable starting point for the calculation of fluctuations of extensive and intensive variables in any statistical ensemble.  相似文献   

15.
Using the field theoretic renormalization group technique the model of passively advected weak magnetic field by an incompressible isotropic helical turbulent flow is investigated up to the second order of the perturbation theory (two-loop approximation) in the framework of an extended Kazantsev-Kraichnan model of kinematic magnetohydrodynamics. Statistical fluctuations of the velocity field are taken in the form of a Gaussian distribution with zero mean and defined noise with finite correlations in time. The two-loop analysis of all possible scaling regimes is done and the influence of helicity on the stability of scaling regimes is discussed and shown in the plane of exponents ? ? η, where ? characterizes the energy spectrum of the velocity field in the inertial range Ek 1 ? 2ε, and η is related to the correlation time at the wave number k which is scaled as k ?2 + η. It is shown that in non-helical case the scaling regimes of the present vector model are completely identical and have also the same properties as those obtained in the corresponding model of passively advected scalar field. Besides, it is also shown that when the turbulent environment under consideration is helical then the properties of the scaling regimes in models of passively advected scalar and vector (magnetic) fields are essentially different. The results demonstrate the importance of the presence of a symmetry breaking in a given turbulent environment for investigation of the influence of an internal tensor structure of the advected field on the inertial range scaling properties of the model under consideration and will be used in the analysis of the influence of helicity on the anomalous scaling of correlation functions of passively advected magnetic field.  相似文献   

16.
Ensembles of pure quantum states whose 2nd moments equal those of the unitarily uniform Haar ensemble—2-designs—are optimal solutions for several tasks in quantum information science, especially state and process tomography. We show that Gaussian states cannot form a 2-design for the continuous-variable (quantum optical) Hilbert space ${L^2(\mathbb{R})}$ . This is surprising because the affine symplectic group HWSp (the natural symmetry group of Gaussian states) is irreducible on the symmetric subspace of two copies. In finite dimensional Hilbert spaces, irreducibility guarantees that HWSp-covariant ensembles (such as mutually unbiased bases in prime dimensions) are always 2-designs. This property is violated by continuous variables for a subtle reason: the (well-defined) HWSp-invariant ensemble of Gaussian states does not have a density matrix because its defining integral does not converge. In fact, no Gaussian ensemble is even close (in a precise sense) to being a 2-design. This surprising difference between discrete and continuous quantum mechanics has important implications for optical state and process tomography.  相似文献   

17.
R. Der  R. Haberlandt 《Physica A》1977,86(1):25-48
The general method of paper I of this series is applied to derive kinetic equations (KE's), i.e. closed exact equations governing the time evolution of the single-particle density matrix. The short-memory approximation of these non-Markowian equations is formulated in such a way that it is valid even in strongly inhomogeneous systems. The c-number diagram expansion of the integral kernels of the KE's is obtained from the general rules of paper I. It is shown that certain secular divergent terms cancel each other. The diagrams decay into dynamic and correlational parts, the latter being given by cluster functions describing the correlations of the particles in the local equilibrium ensemble σ(t) which is formulated in terms of the single-particle density matrix and of the Hamiltonian. The appearance of the cluster functions is the most pronounced difference of our KE's in comparison with other KE's which are formulated in terms of the dynamics of isolated clusters of particles. It is argued that our KE's may be viewed as a highly summed version of these latter KE's and that the ultimate reason for this difference lies in the fact that in our theory the conservation of the average macroscopic energy is taken into account explicitly.  相似文献   

18.
The assumption that an ensemble of classical particles is subject to nonclassical momentum fluctuations, with the fluctuation uncertainty fully determined by the position uncertainty, has been shown to lead from the classical equations of motion to the Schrödinger equation. This ‘exact uncertainty’ approach may be generalised to ensembles of gravitational fields, where nonclassical fluctuations are added to the field momentum densities, of a magnitude determined by the uncertainty in the metric tensor components. In this way one obtains the Wheeler-DeWitt equation of quantum gravity, with the added bonus of a uniquely specified operator ordering. No a priori assumptions are required concerning the existence of wave functions, Hilbert spaces, Planck's constant, linear operators, etc. Thus this approach has greater transparency than the usual canonical approach, particularly in regard to the connections between quantum and classical ensembles. Conceptual foundations and advantages are emphasised.  相似文献   

19.
Explicit expressions for the time-dependent spin correlation functions are derived for the one-dimensional alternating XY-model in zero field. The ergodic properties of the wave-number dependent magnetization are discussed. It is found that the magnetization is ergodic, apart from exceptional cases, such as e.g. the homogeneous XY-model.  相似文献   

20.
H.A Tolhoek 《Physica A》1977,86(2):278-302
In a previous paper wave propagation was studied according to a sixth-order partial differential equation involving a complex mass M. The corresponding Yang-Feldman integral equations (indicated as SM-YF-equations), were formulated using modified Green's functions GMR(x) and GMA(x), which then incorporate the partial differential equation together with certain boundary conditions. In this paper certain limit properties of these modified Green's functions are derived: (a) It is shown that for |M| → ∞ the Green's functions GMR(x) and GMA(x) approach the Green's functions ΔR(x) and ΔA(x) of the corresponding KG-equation (Klein-Gordon equation). (b) It is further shown that the asymptotic behaviour of GMA(x) and GMA(x) is the same as of ΔR(x) and ΔA(x) - and also the same as for DR(x) and DA(x) for t→ ± ∞, where DR and DA are the Green n's functions for the KG-equation with mass zero. It is essential to take limits in the sense of distribution theory in both cases (a) and (b). The property (b) indicates that the wave propagation properties of the SM-YF-equations, the KG-equation with finite mass and the KG-equation with mass zero are closely related in an asymptotic sense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号