首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This paper examines approximate dynamic programming algorithms for the single-vehicle routing problem with stochastic demands from a dynamic or reoptimization perspective. The methods extend the rollout algorithm by implementing different base sequences (i.e. a priori solutions), look-ahead policies, and pruning schemes. The paper also considers computing the cost-to-go with Monte Carlo simulation in addition to direct approaches. The best new method found is a two-step lookahead rollout started with a stochastic base sequence. The routing cost is about 4.8% less than the one-step rollout algorithm started with a deterministic sequence. Results also show that Monte Carlo cost-to-go estimation reduces computation time 65% in large instances with little or no loss in solution quality. Moreover, the paper compares results to the perfect information case from solving exact a posteriori solutions for sampled vehicle routing problems. The confidence interval for the overall mean difference is (3.56%, 4.11%).  相似文献   

3.
4.
In this paper we study the routing of a single vehicle that delivers products and picks up items with stochastic demand. The vehicle follows a predefined customer sequence and is allowed to return to the depot for loading/unloading as needed. A suitable dynamic programming algorithm is proposed to determine the minimum expected routing cost. Furthermore, the optimal routing policy to be followed by the vehicle’s driver is derived by proposing an appropriate theorem. The efficiency of the algorithm is studied by solving large problem sets.  相似文献   

5.
We present a new branch-and-cut algorithm for the capacitated vehicle routing problem (CVRP). The algorithm uses a variety of cutting planes, including capacity, framed capacity, generalized capacity, strengthened comb, multistar, partial multistar, extended hypotour inequalities, and classical Gomory mixed-integer cuts. For each of these classes of inequalities we describe our separation algorithms in detail. Also we describe the other important ingredients of our branch-and-cut algorithm, such as the branching rules, the node selection strategy, and the cut pool management. Computational results, for a large number of instances, show that the new algorithm is competitive. In particular, we solve three instances (B-n50-k8, B-n66-k9 and B-n78-k10) of Augerat to optimality for the first time.  相似文献   

6.
This paper proposes a new pro-active real-time control approach for dynamic vehicle routing problems in which the urgent delivery of goods is of utmost importance. Without assuming any distribution, stochastic knowledge about future requests is generated using past request information. The generated knowledge is integrated into the transportation process, which is controlled by a Tabu Search algorithm, in order to actively guide vehicles to request-likely areas before requests arrive there. By analyzing the results attained for various test settings, we identify structural diversity as a crucial criterion for classifying the quality of stochastic knowledge attainable from past request information. This criterion provides a promising starting point for assessing the quality of past request information in order to efficiently use the derived stochastic knowledge in real-time control approaches. We prove the efficiency of our approach by a direct comparison with a deterministic approach on test scenarios with varying structural diversity. Thanks to the proposed classification of structural diversity, differences in results obtained among the tested scenarios become explainable.  相似文献   

7.
宁涛  陈荣  郭晨  梁旭 《运筹学学报》2015,19(2):72-82
针对配送调度事件动态变化的动态车辆路径问题(DVRP), 以最小化运输成本、最小化配送时间 与最大化载货率为目标, 建立了问题的数学模型,提出了改进的多相量子粒子群算法. 针对DVRP问题的特点,提出基于车辆链和货物链的双链量子编码方法; 同时设计了基于周期和 重调度因子驱动的动态调度策略. 最后将方法应用于动态仿真算例, 并与其他经典算法比较, 结果验证了所提出方法的有效性.  相似文献   

8.
In the partial accessibility constrained vehicle routing problem, a route can be covered by two types of vehicles, i.e. truck or truck + trailer. Some customers are accessible by both vehicle types, whereas others solely by trucks. After introducing an integer programming formulation for the problem, we describe a two-phase heuristic method which extends a classical vehicle routing algorithm. Since it is necessary to solve a combinatorial problem that has some similarities with the generalized assignment problem, we propose an enumerative procedure in which bounds are obtained from a Lagrangian relaxation. The routine provides very encouraging results on a set of test problems.  相似文献   

9.
A column generation approach is presented for the split delivery vehicle routing problem with large demand. Columns include route and delivery amount information. Pricing sub-problems are solved by a limited-search-with-bound algorithm. Feasible solutions are obtained iteratively by fixing one route once. Numerical experiments show better solutions than in the literature.  相似文献   

10.
We consider two on-line versions of the asymmetric traveling salesman problem with triangle inequality. For the homing version, in which the salesman is required to return in the city where it started from, we give a 3+52-competitive algorithm and prove that this is best possible. For the nomadic version, the on-line analogue of the shortest asymmetric Hamiltonian path problem, we show that the competitive ratio of any on-line algorithm depends on the amount of asymmetry of the space in which the salesman moves. We also give bounds on the competitive ratio of on-line algorithms that are zealous, that is, in which the salesman cannot stay idle when some city can be served.  相似文献   

11.
In this paper we investigate a vehicle routing problem motivated by a real-world application in cooperation with the German Automobile Association (ADAC). The general task is to assign service requests to service units and to plan tours for the units such as to minimize the overall cost. The characteristics of this large-scale problem due to the data volume involve strict real-time requirements. We show that the problem of finding a feasible dispatch for service units starting at their current position and serving at most k requests is NP-complete for each fixed k ≥ 2. We also present a polynomial time (2k − 1)-approximation algorithm, where again k denotes the maximal number of requests served by a single service unit. For the boundary case when k equals the total number |E| of requests (and thus there are no limitations on the tour length), we provide a -approximation. Finally, we extend our approximation results to include linear and quadratic lateness costs.  相似文献   

12.
This paper develops simulated annealing metaheuristics for the vehicle routing and scheduling problem with time window constraints. Two different neighborhood structures, the λ-interchange mechanism of Osman and thek-node interchange process of Christofides and Beasley, are implemented. The enhancement of the annealing process with a short-term memory function via a tabu list is examined as a basis for improving the metaheuristic approach. Computational results on test problems from the literature as well as large-scale real-world problem are reported. The metaheuristics achieve solutions that compare favorably with previously reported results.  相似文献   

13.
In this paper, we extend upon current research in the vehicle routing problem whereby labour regulations affect planning horizons, and therefore, profitability. We call this extension the multiperiod vehicle routing problem with profit (mVRPP). The goal is to determine routes for a set of vehicles that maximizes profitability from visited locations, based on the conditions that vehicles can only travel during stipulated working hours within each period in a given planning horizon and that the vehicles are only required to return to the depot at the end of the last period. We propose an effective memetic algorithm with a giant-tour representation to solve the mVRPP. To efficiently evaluate a chromosome, we develop a greedy procedure to partition a given giant-tour into individual routes, and prove that the resultant partition is optimal. We evaluate the effectiveness of our memetic algorithm with extensive experiments based on a set of modified benchmark instances. The results indicate that our approach generates high-quality solutions that are reasonably close to the best known solutions or proven optima, and significantly better than the solutions obtained using heuristics employed by professional schedulers.  相似文献   

14.
We study the routing of a single vehicle that delivers multiple products under stochastic demand. Specifically, we investigate two practical variations of this problem: (i) The case in which each product type is stored in its dedicated compartment in the vehicle, and (ii) the case in which all products are stored together in the vehicle’s single compartment. Suitable dynamic programming algorithms are proposed to determine the minimum expected (routing) cost for each case. Furthermore, the optimal routing policy is derived by developing appropriate theorems. The efficiency of the algorithms is studied by solving large problem sets.  相似文献   

15.
针对线上到线下(Online to Offline,O2O) 外卖路径优化问题,综合考虑其动态配送需求、货物区分等特点以及时间窗、载货量等约束条件,将商圈看作配送中心,将快递员数量与快递员总行驶时间作为最小化目标,提出了以商圈为中心的O2O动态外卖配送路径优化模型。采用周期性处理新订单的方法将相应的快递员路径的动态调整问题转化为一系列静态TSP子问题,设计了一种分阶段启发式实时配送路径优化算法框架,并给出了一个具体算法和一个数值计算实例。在VRP通用算例的基础上,以商圈为中心生成测试算例,对本文算法进行仿真实验,并与其他算法比较。结果表明:本文算法能充分利用新订单附近的快递员进行配送,并优化其配送路径,有效减少了快递员数量与快递员总行驶时间。  相似文献   

16.
针对线上到线下(Online to Offline,O2O) 外卖路径优化问题,综合考虑其动态配送需求、货物区分等特点以及时间窗、载货量等约束条件,将商圈看作配送中心,将快递员数量与快递员总行驶时间作为最小化目标,提出了以商圈为中心的O2O动态外卖配送路径优化模型。采用周期性处理新订单的方法将相应的快递员路径的动态调整问题转化为一系列静态TSP子问题,设计了一种分阶段启发式实时配送路径优化算法框架,并给出了一个具体算法和一个数值计算实例。在VRP通用算例的基础上,以商圈为中心生成测试算例,对本文算法进行仿真实验,并与其他算法比较。结果表明:本文算法能充分利用新订单附近的快递员进行配送,并优化其配送路径,有效减少了快递员数量与快递员总行驶时间。  相似文献   

17.
Cumulative capacitated vehicle routing problem (CCVRP) is an extension of the well-known capacitated vehicle routing problem, where the objective is minimization of sum of the arrival times at nodes instead of minimizing the total tour cost. This type of routing problem arises when a priority is given to customer needs or dispatching vital goods supply after a natural disaster. This paper focuses on comparing the performances of neighbourhood and population-based approaches for the new problem CCVRP. Genetic algorithm (GA), an evolutionary algorithm using particle swarm optimization mechanism with GA operators, and tabu search (TS) are compared in terms of required CPU time and obtained objective values. In addition, a nearest neighbourhood-based initial solution technique is also proposed within the paper. To the best of authors’ knowledge, this paper constitutes a base for comparisons along with GA, and TS for further possible publications on the new problem CCVRP.  相似文献   

18.
We give an online algorithm for minimizing the total weighted completion time on a single machine where preemption of jobs is allowed and prove that its competitive ratio is at most 1.57.  相似文献   

19.
The generalized vehicle routing problem (GVRP) is an extension of the vehicle routing problem (VRP) and was introduced by Ghiani and Improta [1]. The GVRP is the problem of designing optimal delivery or collection routes from a given depot to a number of predefined, mutually exclusive and exhaustive node-sets (clusters) which includes exactly one node from each cluster, subject to capacity restrictions. The aim of this paper is to provide two new models of the GVRP based on integer programming. The first model, called the node formulation is similar to the Kara-Bekta? formulation [2], but produces a stronger lower bound. The second one, called the flow formulation, is completely new. We show as well that under specific circumstances the proposed models of the GVRP reduces to the well known routing problems. Finally, the GVRP is extended for the case in which the vertices of any cluster of each tour are contiguous. This case is defined as the clustered generalized vehicle routing problem and both of the proposed formulations of GVRP are adapted to clustered case.  相似文献   

20.
We propose an iterated local search algorithm for the vehicle routing problem with time window constraints. We treat the time window constraint for each customer as a penalty function, and assume that it is convex and piecewise linear. Given an order of customers each vehicle to visit, dynamic programming (DP) is used to determine the optimal start time to serve the customers so that the total time penalty is minimized. This DP algorithm is then incorporated in the iterated local search algorithm to efficiently evaluate solutions in various neighborhoods. The amortized time complexity of evaluating a solution in the neighborhoods is a logarithmic order of the input size (i.e., the total number of linear pieces that define the penalty functions). Computational comparisons on benchmark instances with up to 1000 customers show that the proposed method is quite effective, especially for large instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号