共查询到20条相似文献,搜索用时 31 毫秒
1.
Bandaria JN Dutta S Hill SE Kohen A Cheatum CM 《Journal of the American Chemical Society》2008,130(1):22-23
The role of femtosecond-picosecond structural dynamics of proteins in enzyme-catalyzed reactions is a hotly debated topic. We report infrared photon echo measurement of the formate dehydrogenase-NAD+-azide ternary complex. In contrast to earlier studies of protein dynamics, the data show complete spectral diffusion on the femtosecond-picosecond time scale with no static heterogeneity. This result indicates that this transition-state analogue complex completely samples the distribution of structures that determine the distribution of azide vibrational frequencies within a few picoseconds and that there are no slower motions that perturb the H-bond network at the active site. 相似文献
2.
Pierdominici-Sottile G Echave J Palma J 《The journal of physical chemistry. B》2006,110(23):11592-11599
We have obtained AMBER94 force-field parameters for the TTQ cofactor of the enzyme methylamine dehydrogenase (MADH). This enzyme catalyzes the oxidation of methylamine to produce formaldehyde and ammonia. In the rate-determining step of the catalyzed reaction, a proton is transferred from the methyl group of the substrate to residue Asp76. We used the new parameters to perform molecular dynamics simulations of MADH in order to characterize the dynamics of the active site prior to the proton-transfer step. We found that only one of the oxygen atoms of Asp76 can act as an acceptor of the proton. The other oxygen interacts with Thr122 via a strong hydrogen bond. In contrast, because of the rotation the methyl group of the substrate, the three methyl hydrogen atoms are alternately in position to be transferred. The distance that the proton has to travel presents a broad distribution with a peak between 1.0 and 1.1 A and reaches values as short as 0.8 A. The fluctuation of the distance between the donor and the acceptor has the largest frequency component at 50 cm(-1), but the spectrum presents a rich structure between 10 and 400 cm(-1). The more important peaks appear below 250 cm(-1). 相似文献
3.
4.
5.
Knowledge of the ionicity of the phosphorane intermediate is important to the analysis of the microscopic mechanism of the hydrolysis of the phosphate ester bond by ribonuclease A (RNase A). Five-coordinate uridine vanadate, an analog of the phosphorane, binds to RNase A as the monoanion. The absorption spectra of the vanadate is a probe of the electronic structure of the active site. An in vacuo theoretical model of H4VO5− is calculated to have transitions only in the far ultraviolet (UV). However, H2VO5C2H4− has one in the near UV as well as others further into the UV. The transition energy of the monoanion calculated in the field of the protein active site with effective fragment potentials shifts modestly to the red. Broad monoanion absorptions are predicted which would overlap an observed incomplete very broad absorption attributed to the complex of uridine vanadate with RNase A. The absorption bands of neutral ethylene glycol vanadate are predicted to be further to the red but also overlap the experimental absorption. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 11–19, 1998 相似文献
6.
Massari AM McClain BL Finkelstein IJ Lee AP Reynolds HL Bren KL Fayer MD 《The journal of physical chemistry. B》2006,110(38):18803-18810
Spectrally resolved infrared stimulated vibrational echo experiments are used to measure the vibrational dephasing of a CO ligand bound to the heme cofactor in two mutated forms of the cytochrome c552 from Hydrogenobacter thermophilus. The first mutant (Ht-M61A) is characterized by a single mutation of Met61 to an Ala (Ht-M61A), while the second variant is doubly modified to have Gln64 replaced by an Asn in addition to the M61A mutation (Ht-M61A/Q64N). Multidimensional NMR experiments determined that the geometry of residue 64 in the two mutants is consistent with a non-hydrogen-bonding and hydrogen-bonding interaction with the CO ligand for Ht-M61A and Ht-M61A/Q64N, respectively. The vibrational echo experiments reveal that the shortest time scale vibrational dephasing of the CO is faster in the Ht-M61A/Q64N mutant than that in Ht-M61A. Longer time scale dynamics, measured as spectral diffusion, are unchanged by the Q64N modification. Frequency-frequency correlation functions (FFCFs) of the CO are extracted from the vibrational echo data to confirm that the dynamical difference induced by the Q64N mutation is primarily an increase in the fast (hundreds of femtoseconds) frequency fluctuations, while the slower (tens of picoseconds) dynamics are nearly unaffected. We conclude that the faster dynamics in Ht-M61A/Q64N are due to the location of Asn64, which is a hydrogen bond donor, above the heme-bound CO. A similar difference in CO ligand dynamics has been observed in the comparison of the CO derivative of myoglobin (MbCO) and its H64V variant, which is caused by the difference in axial residue interactions with the CO ligand. The results suggest a general trend for rapid ligand vibrational dynamics in the presence of a hydrogen bond donor. 相似文献
7.
8.
Anderson JE De Meijere A Kozhushkov SI Lunazzi L Mazzanti A 《Journal of the American Chemical Society》2002,124(23):6706-6713
Tetraisopropylmethane (1) exists in solution as a mixture of two types of conformers (D2d and S4 time-averaged symmetry) in the ratio 93:7 at -110 degrees C, interconverting with a barrier of 9.7 kcal mol-1. Molecular mechanics calculations and the multiplicity of NMR signals at low temperature allow the assignment of these conformations. The only conformation populated in tetracyclopropylmethane (2) is the same type as the minor conformation (S4 time-averaged symmetry) populated in 1. 13C NMR spectra at about -180 degrees C show that degenerate versions of this conformation interconvert with a barrier of 4.5 kcal mol-1. Molecular mechanics calculations that characterize the six possible conformational types for these molecules, and the most important interconversion pathways, are reported. Calculated and experimental barriers match satisfactorily well. 相似文献
9.
We have run several molecular dynamics (MD) simulations on zinc-containing phosphotriesterase (PTE) with two bound substrates, sarin and paraoxon, and with the substrate analog diethyl 4-methylbenzylphosphonate. A standard nonbonded model was employed to treat the zinc ions with the commonly used charge of +2. In all the trajectories, we observed a tightly bound water (TBW) molecule in the active site that was coordinated to the less buried zinc ion. The phosphoryl oxygen of the substrate/inhibitor was found to be coordinated to the same zinc ion so that, considering all ligands, the less buried zinc was hexa-coordinated. The hexa-coordination of this zinc ion was not seen in the deposited X-ray pdb files for PTE. Several additional MD simulations were then performed using different charges (+1, +1.5) on the zinc ions, along with ab initio and density functional theory (DFT) calculations, to evaluate the following possibilities: the crystal diffraction data were not correctly interpreted; the hexa-coordinated zinc ion in PTE is only present in solution and not in the crystal; and the hexa-coordinated zinc ion in PTE is an artifact of the force field used. A charge of +1.5 leads to a coordination number (CN) of 5 on both zinc ions, which is consistent with the results from ab initio and DFT calculations and with the latest high resolution X-ray crystal structure. The commonly used charge of +2 produces a CN of 6 on the less buried zinc. The CN on the more buried zinc ion is 5 when the substrate/inhibitor is present in the simulation, and increases to 6 when the substrate/inhibitor is removed prior to the simulation. The results of both of the MD and quantum mechanical calculations lead to the conclusion that the zinc ions in the PTE active site are both penta-coordinated, and that the MD simulations performed with the charge of +2 overestimate the CN of the zinc ions in the PTE active site. The overall protein structures in the simulations remain unaffected by the change in zinc charge from +2 to +1.5. The results also suggest that the charge +1.5 is the most appropriate for the molecular dynamics simulations on zinc-containing PTE when a nonbonded model is used and no global thermodynamic conclusion is sought. We also show that the standard nonbonded model is not able to properly treat the CN and energy at the same time. A preliminary, promising charge-transfer model is discussed with the use of the zinc charge of +1.5. 相似文献
10.
Schwartz L Ekström J Lomoth R Ott S 《Chemical communications (Cambridge, England)》2006,(40):4206-4208
The first model of the iron hydrogenase active site has been prepared in which an amine ligand is loosely coordinated to an Fe(i) centre, and can be replaced by a solvent molecule; irrespective of the ligand set, the one electron reduction of both complexes is chemically reversible and is shown to proceed through the same species which features a bridging CO ligand. 相似文献
11.
12.
Modern self-assembly techniques aiming to produce complex structural order or functional diversity often rely on non-equilibrium conditions in the system. Light, electric, or magnetic fields are predominantly used to modify interaction profiles of colloidal particles during self-assembly or induce complex out-of-equilibrium dynamic ordering. The energy injection rate, properties of the environment are important control parameters that influence the outcome of active (dynamic) self-assembly. The current review is focused on a case of collective dynamics and self-assembly of particles with externally driven torques coupled to a liquid or solid interface. The complexity of interactions in such systems is further enriched by strong hydrodynamic coupling between particles. Unconventionally ordered dynamic self-assembled patterns, spontaneous symmetry breaking phenomena, self-propulsion, and collective transport have been reported in torque-driven colloids. Some of the features of the complex collective behavior and dynamic pattern formation in those active systems have been successfully captured in simulations. 相似文献
13.
《Tetrahedron》1988,44(8):2359-2366
Formyl-Met-Leu-ΔZ-Phe-OMe, an analog of the chemotactic tripeptide Formyl-Met-Leu-Phe has been synthesized to evaluate the effect of substitution of α, β -dehydrophenylalanine on activity and conformation. The analog peptide shows high biological activity in stimulating superoxide production by rabbit neutrophils. An NMR analysis of the solution conformation of the ΔZ-Phe analog, using nuclear Overhauser effects and comparisons with the corresponding saturated peptides, favours a significant population of extended backbone conformations. 相似文献
14.
Doonan CJ Stockert A Hille R George GN 《Journal of the American Chemical Society》2005,127(12):4518-4522
In this paper we report the results of molybdenum K-edge X-ray absorption studies performed on the oxidized active site of xanthine oxidase at pH 6 and 10. These results indicate that the active site possesses one terminal oxygen ligand (Mo=O), two thiolate ligands (Mo-S), one terminal sulfido ligand (Mo=S), and one Mo-OH moiety. EXAFS analysis demonstrates that the Mo-OH bond shortens from 1.97 A at pH 6 to 1.75 A at pH 10, which is consistent with the generation of a Mo-O- moiety. This study provides convincing structural evidence that the catalytic oxygen donor at the oxidized active site of xanthine oxidase is Mo-OH rather than the Mo-OH2 ligation previously suggested by X-ray crystallography. These results support a mechanism initiated by base-assisted nucleophilic attack of the substrate by Mo-OH. 相似文献
15.
Culpepper MA Cutsail GE Hoffman BM Rosenzweig AC 《Journal of the American Chemical Society》2012,134(18):7640-7643
Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that converts methane to methanol in methanotrophic bacteria. The enzyme consists of three subunits, pmoB, pmoA, and pmoC, organized in an α(3)β(3)γ(3) trimer. Studies of intact pMMO and a recombinant soluble fragment of the pmoB subunit (denoted as spmoB) indicate that the active site is located within the soluble region of pmoB at the site of a crystallographically modeled dicopper center. In this work, we have investigated the reactivity of pMMO and spmoB with oxidants. Upon reduction and treatment of spmoB with O(2) or H(2)O(2) or pMMO with H(2)O(2), an absorbance feature at 345 nm is generated. The energy and intensity of this band are similar to those of the μ-η(2):η(2)-peroxo-Cu(II)(2) species formed in several dicopper enzymes and model compounds. The feature is not observed in inactive spmoB variants in which the dicopper center is disrupted, consistent with O(2) binding to the proposed active site. Reaction of the 345 nm species with CH(4) results in the disappearance of the spectroscopic feature, suggesting that this O(2) intermediate is mechanistically relevant. Taken together, these observations provide strong new support for the identity and location of the pMMO active site. 相似文献
16.
17.
Conejo-García A Campos JM Entrena A Sánchez-Martín RM Gallo MA Espinosa A 《The Journal of organic chemistry》2003,68(22):8697-8699
A complete study of the conformational behavior of 4,8-diaza-3(1,4),9(4,1)-dipyridina-1,6(1,4)-dibenzenacyclodecaphan-3(1),9(1)-bis(ilium) bishexafluorophosphate is described. This study allows us to conclude that the process observed by which the different chemical shifts of the pyridinium protons show coalescence at a high-temperature 1H NMR is the rotation around the C-N bond, whereas the conformational equilibrium between the four conformers is produced at low temperature. 相似文献
18.
We have used ab initio molecular dynamics (AIMD) to investigate the dynamical flexibility of the bridged binuclear structural motif in the active site of arginase. Dynamical transformations play a crucial role in catalysis. We have provided direct insight into the motions of the first-shell ligands with emphasis on the chelating and bridging carboxylates. In the case of the terminal Asp234 residue we observe changes in the binding mode (carboxylate shifts). AIMD dynamics of sufficient duration has allowed us to observe proton transfer from the bridging nucleophile to the catalytically essential Asp 128 residue and to map the underlying free energy surface in terms of simple reaction coordinates, such as the oxygen-oxygen distance Ro-o and the asymmetric stretch delta. This has provided valuable insight into the nature of the last step of the catalytic cycle. In addition, constrained molecular dynamics permitted us to compare the deprotonation free energy of the bridging nucleophile in the case of native versus metal-depleted arginase. 相似文献
19.
A gold nanoparticle functionalized with substrates for alpha-chymotrypsin was fabricated to afford an enzyme modulator that exhibited enzyme-specific activation coupled with general inhibition of other proteases. 相似文献
20.
We report experiments on dendritic molecules with integrated conjugated chromophores that provide microscopic mechanistic information about their solvation dynamics. The fluorescence of a series of immobilized dendritically organized oligothiophenes is studied as they are exposed to good solvents. Initially, the pi-stacking of the oligothiophene units in the dendrimer is destabilized, but full separation of the oligothiophene dendrons takes a time that is orders of magnitude longer due to barriers to torsional motion of the ester linkages. The metastable state prior to separation of the conjugated segments exhibits solution-like spectroscopy but low fluorescence quantum yield relative to the fully solvated segments. This species may play an important role in the photophysics of conjugated oligomer and polymer films. Unusual non-exponential kinetics for the oligothiophene separation step are observed and can be understood in terms of energy transfer among the dendrons. 相似文献