首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Molecularly imprinted polymer (MIP) microspheres were synthesized through precipitation polymerization using malachite green (MG) as template, methacrylic acid (MAA) as monomer, and trimethylolpropane trimethacrylate (TRIM) as cross-linker. The microsphere structure of MIP was characterized by IR spectroscopy and SEM. The influence of preparation conditions such as monomer and cross-linker dosages on the polymer absorption of MG in acetonitrile solution was also explored. Under the optimum synthesis conditions (0.25 mmol MG, 1.5 mmol MAA, 2.5 mmol TRIM, 40 mL acetonitrile), the prepared MIP microspheres have a binding capacity as high as 2000 µg g?1 of MG with an imprinting factor of above 4.0. The result suggests that the prepared MIP microspheres are promising material for the selective extraction of MG in complicated matrix solutions.  相似文献   

2.
《先进技术聚合物》2018,29(8):2401-2409
The objective of this work was to synthesize molecularly imprinted polymer (MIP) nanoparticles based on methacrylic acid (MAA) monomer with a high selectivity against an anti‐cancer drug, 5‐fluorouracil (5‐FU), as a template. In this case, the nanoparticles were prepared via precipitation polymerization in the presence of ethylene glycol dimethacrylate as cross‐linker and azobisisobutyronitrile as initiator. Besides, 3 independent variables including MAA: 5‐FU molar ratio (X1), temperature (X2), and time (X3) were investigated utilizing response surface methodology. The scanning electron microscopy and dynamic light scattering resulted the average diameter of approximately 65 nm, and the MIP nanoparticle sample with the imprinting factor of 1.57 was polymerized in optimized conditions as follows: X1 = 6: 1, X2 = 60°C, and X3 = 3 days in acetonitrile as porogenic solvent. Also, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis confirmed the formation of MAA/5‐FU complex and lower thermal stability of the washed MIP sample than the unwashed MIP and non‐imprinted polymer (NIP) samples, respectively. Moreover, the optimized MIP nanoparticles have more controlled release of 5‐FU rather than the NIP sample. Finally, the flow cytometry showed that 5‐FU‐loaded MIP sample has the highest apoptosis of human colon cancer cell line, HCT‐116, after 3 days compared with NIP sample and also the exclusive use of drug.  相似文献   

3.
A monolithic fiber of molecularly imprinted polymer (MIP) was prepared by in situ polymerization within the capillary with an inner diameter of 530 µm. It was carried out in 8 min by microwave irradiation using malachite green (MG) as a template molecule, α‐methacrylic acid (MAA) as a functional monomer, acetonitrile (ACN) as a porogenic solvent, ethylene dimethacrylate (EDMA) as a crosslinker, azodiiso‐butyronitrile (AIBN) as a thermal initiator. The resulted MIP fibers were pushed out from the capillary, eluted and inserted in the capillary again, which successfully used for the solid phase microextraction (SPME) procedure. The factors affecting the extraction of MG, such as the molar ratio of template/monomer (MG/MAA), concentration of NaCl, extraction and desorption time, and extraction and desorption solvents were investigated in detail. The selectivity of the MIP fibers was compared using MG analogues crystal violet (CV) and non‐analogue Sudan II. It was also employed for the pretreatment of trace MG in the fish feed followed by high‐performance liquid chromatography (HPLC) detection. Under the optimal conditions, the linear range of MG was 10‐600 μg/L, the detection limit (LOD) was 1.23 μg/L and the recovery of spiked fish feed sample was 88.7~113.9%.  相似文献   

4.
以1-氨基乙内酰脲(AHD)为模板分子,α-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,采用本体聚合方法合成了分子印迹聚合物(M IP),考察了模板分子与功能单体不同比例下制备的M IP对模板分子的吸附性能。通过Scatchard分析,表明该印迹聚合物上存在一类等价的吸附位点,其结合位点的离解常数KD=4.33mmol/L。  相似文献   

5.
通过分子模拟研究模板分子与功能单体的相互作用,可以缩短优化时间,为选取合适的功能单体以及模板分子/功能单体比例提供依据.本研究以山奈酚为模板分子,通过分子模拟优化实验条件,确定以甲基丙烯酸(MAA)为最优的功能单体,山奈酚/MAA最佳比例为1∶4 (w/w).此外,以二苄基三硫代碳酸酯(DBTTC)为可逆加成-链断裂转移剂,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,实现了仅需优化引发剂和可逆加成-断裂链转移聚合(RAFT)试剂即可制得性能优异的山奈酚分子印迹整体柱.此整体柱对山奈酚和相似物槲皮素的分离度为1.52,相对标准偏差为1.8%.实验结果表明,分子模拟计算简化了实验步骤,以DBTTC为RAFT试剂得到了具有更好形态和结构的分子印迹整体柱.  相似文献   

6.
A vanillin imprinted capillary monolithic column was synthesized by in situ polymerization reaction using ethylene-glycol dimethacrylate as cross-linking monomer and methacrylic acid as functional monomer. Under the optimum conditions of capillary electrochromatography, this molecularly imprinted polymer (MIP)-based column showed high selectivity and could recognize not only template molecule vanillin but also positional isomer o-vanillin from their structural analogues.  相似文献   

7.
In this paper, a simple, fast and in situ polymerization strategy to prepare monolithic molecularly imprinted polymer (MIP) fibers for solid phase microextraction (SPME) is developed using silica capillaries as molds. With the help of microwave irradiation, polymerization was carried out in 5.5 min using olivetol as a template molecular, α‐methacrylic acid (MAA) as a functional monomer and ethylene dimethacrylate (EDMA) as a crosslinker, toluene and dodecanol as the binary porgens. The resulted MIP fibers were finally obtained after silica being etched away with a controlled length, and subsequently characterized by scanning electron microscope (SEM) and Fourier transform infrared absorption spectroscopy (FT‐IR). Under the optimal extraction conditions, a simple method based on the coupling of MIP SPME with high performance liquid chromatography (HPLC) was used for the selective determination of the model mixtures of olivetol, phenol and m‐toluidine in lake water and wheat bran samples. The recoveries of olivetol, phenol and m‐toluidine for both samples were in the range of 87.3‐93.6%, 21.4‐27.2%, 18.9‐24.8% at three spiked levels, respectively, demonstrating that higher extraction and the specific absorption occurred between the template molecule and the prepared MIP fiber.  相似文献   

8.
A computational approach was developed to find a suitable functional monomer to design a new molecularly imprinted polymer (MIP), based on which methacyrlic acid (MAA) was selected as a functional monomer to synthesize the molecular imprinted and non‐imprinted polymers. All calculations were carried out using Gaussian 03 software based on the application of Hartree?Fock (HF) method with 6‐31G (d) basis set. The performance of the MIPs prepared with different ratios of MAA was then evaluated using equilibrium rebinding assays. The MIP with the highest binding capacity was chosen as recognition material for the fabrication of new PVC sensors and their responses were compared with each other and with previously reported modifiers in literature. The addition of the ionic surfactant (TFPB) was found to have a synergistic effect on the response mechanism of the electrodes. The results of the MIP modified sensors show that they provide an improved electrode slope, wider pH range and a highly extended life time reaching 7 months compared to 2–4 weeks in case of traditional ion‐exchangers reported in literature, besides, being successfully applied for measurements in biological samples.  相似文献   

9.
Molecular imprinted polymers (MIP) were prepared by the copolymerization of styrene (S) or methyl methacrylate (MMA) and methacrylic acid (MAA) using ethylene glycol dimethacrylate (EGDMA) as the crosslinker with molar ratios of [monomer]/[crosslinker] and [MAA]/[template] of 3:7 (to obtain a rigid structure) and 1:6 (to optimise hydrogen interactions), respectively. The polymerizations occurred in presence of the template molecule (MIP) - GlcNcouma - an amphiphilic monosaccharide. The same materials, non-imprinted polymers (NIP), were also prepared in absence of the template. These MIPs were characterized and used as SPE supports for selective enrichment. The results showed the correlation between retention efficiency and the porogen character of the polymerization solvent.  相似文献   

10.
A new adsorbent for molecularly imprinted solid phase extraction (MISPE) of metoprolol was synthesized using methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross‐linking agent causing a non‐covalent, bulk, thermal radical‐polymerization. Control polymer (non‐imprinted polymer) was prepared under well defined conditions without the use of metoprolol. The synthesized polymers were characterized by IR spectroscopy, X‐ray diffraction and thermal analysis techniques. This polymer was used for the rapid extraction and preconcentration of metoprolol from real samples prior to spectrophotometric determination. Extraction efficiency and the influence of flow rates of sample and stripping solutions, pH, type of eluent for elution of metoprolol from polymer, break through volume and limit of detection were studied. The detection limit of the proposed method is 0.4 ng·mL?1. The method was applied successfully to the recovery and determination of metoprolol in tablets, human urine and plasma samples.  相似文献   

11.
Monodisperse, molecularly imprinted nanospheres were synthesized by nonaqueous (mini)emulsion polymerization using a standard monomer mixture of methacrylic acid and ethylene dimethacrylate containing the drug propranolol as a template. The preparation conditions (solvent, amount of surfactant, and amount of employed template) were extensively varied in order to assess their effect on the properties of the resulting polymer nanoparticles. The molecular recognition capability of the nanospheres was evaluated in batch rebinding experiments, and the effect of the nanosphere preparation conditions as well as of the reaction conditions was investigated. In this way, optimal preparation protocols for molecularly imprinted nanoparticles under nonaqueous conditions with the use of a nonionic emulsifier were identified, which lead to nanospheres with a diameter of around 100 nm having an enhanced capacity of specific template rebinding compared to both nonimprinted nanospheres and to particles obtained by emulsion polymerization in water. Best results were obtained with nanospheres prepared in N,N‐dimethylformamide/n‐hexane with a high functional monomer to template ratio. The enantioselectivity of the rebinding process was also demonstrated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
In this paper, a molecularly imprinted polymer (MIP) coating grafted to a trimethylolpropane trimethacrylate (TRIM) core material for CEC was reported. The core monolith was prepared with a solution of 20% (w/w) TRIM in a mixture of porogen and a polymerization precursor, which can generate a stable electroosmotic flow due to the formation of ionizable groups after postpolymerization hydrolization. Graft polymerization took place on the resultant TRIM monolith with a mixture of template, methacrylic acid, and ethylene glycol dimethacrylate. Strong recognition ability (selectivity factor was 5.83) for S‐amlodipine and resolution of enatiomers separation (up to 7.99) were obtained on the resulting grafted imprinted monolith in CEC mode. The influence of CEC conditions on chiral separation, including the composition of mobile phase, pH value, and the operating voltages was studied. These results suggest that the method of grafted polymerization reported here allows a rapid development of MIP monolith once core materials with desired properties are available, and is a good alternative to prepare CEC‐based monolithic MIPs.  相似文献   

13.
Since PVC films do not swell in pure methacrylic acid (MAA) the films were subjected to gamma-rays while dipped in various mixtures MAACHCl2. Under such conditions, the grafting proceeds smoothly and its rate exhibits a flat maximum for the mixture containing ca. 50% (molar) monomer. The rate satisfies the relationship Rate = KI0.6 and the over-all activation energy of the process is 4 kcal/mole. MAA grafted PVC films do not swell in solvents for PMAA (such as water or methanol) even for high grafting ratios. This result is unexpected since PTFE films grafted with either acrylic or methacrylic acid swell to a large extent in water and are excellent membranes. The swelling of the grafted PVC films was investigated in mixtures 1,2-dichloroethylene -methanol. It was found that the extent of swelling was highest in the mixture containing 35% methanol. The unusual swelling properties of these grafted films are attributed to strong polar interactions between PVC and PMAA chains.  相似文献   

14.
Solid-phase extraction (SPE) with a molecularly imprinted polymer (MIP) as sorbent has been investigated for the clean-up of the broad-spectrum bacteriostatic antibiotic chloramphenicol (CAP) in honey samples. The MIP was prepared by using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as cross-linker, chloroform as porogen and CAP as template molecule. The binding behaviour of the template CAP on the MIP was evaluated by high-performance liquid chromatography, and then the MIP was applied as a sorbent in SPE to selectively extract CAP from honey. It was shown that recoveries of nearly 100% of a CAP standard solution and up to 94% from spiked honey samples could be obtained after SPE.  相似文献   

15.
Using diallylmethyl alkyl ammonium salts (CCX) (X is alkyl's chain length, represents 12, 14, 16, and 18, respectively) as a comonomer of methacrylic (MAA), hydrophobically modified hydrogels of poly diallylmethyl alkyl ammonium salts‐methacrylic acid (PCCX‐MAA) were prepared by free radical copolymerization in aqueous solution. The synthetic conditions, such as dosage of cross‐linking agent, reaction concentration and length of alkyl chain were studied in detail. Results indicated that the swelling degree of hydrogels was decreased with dosage of cross‐linking agent, or monomer concentration increased at different pH. Incorporation of the different length of alkyl chain hydrophobic CCX units on PMAA chains by random distribution can change reswelling kinetics. The required time for reaching equilibrium swelling state was longest for PCC16‐MAA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, N‐vinylpyrrolidone (VP)/methacrylic acid (MAA) copolymers have been prepared at three different mole percents, the methacrylic acid composition being around 5, 10, 15%. MAA and VP monomer mixtures have been irradiated in 60Co‐γ source at different irradiation doses and percent conversions have been determined gravimetrically. ~80% conversion of monomers into hydrogels were performed at 3.4 kGy irradiation dose. These hydrogels were swollen in distilled water at pH 4.0, 7.0, and 9.0. P(VP/MAA) hydrogel which contains 5% methacrylic acid showed the maximum % swelling at pH 9.0 in water. Diffusion of water was found to be of non‐Fickian character. Diffusion coefficients of water in P(VP/MAA) hydrogels were calculated. Initial swelling rates of P(VP/MAA) hydrogels increased with increasing pH and MAA content in hydrogels. Swelling kinetics of P(VP/MAA) hydrogels was found to be of second order. Thermal behavior of PMAA, PVP and P(VP/MAA) hydrogel were investigated by thermal analysis. P(VP/MAA) hydrogel gained new thermal properties and the temperature for maximum weight loss and temperature for half‐life of P(VP/MAA) hydrogel were determined.  相似文献   

17.
A molecularly imprinted polymer (MIP) capable of detecting bilirubin was successfully synthesized. Bilirubin template was imprinted in poly(methacrylic acid-co-ethylene glycol dimethylacrylate) [poly(MAA-co-EGDMA)]. MAA and EGDMA were used as the monomer and the cross-linker, respectively. The optimal solvent conditions to maintain its stability were discussed. Solvent system based on ethylenediamine tetraacetic acid (EDTA) and ascorbic acid was compared with respect to the stability of bilirubin. pH and bilirubin concentration were both investigated for the bilirubin stability. Blue light as well as aeration was applied to inspect the regarding effects. The cross-linking effect was further confirmed by the thermogravimetric analysis (TGA). The effect of salts, such as NaCl and KCl on the binding capacity of the molecularly imprinted polymer was also discussed. Further, the rat serum and bile samples were applied and the binding of the MIPs for bilirubin was thus confirmed.  相似文献   

18.
The analysis of alkyl alkylphosphonic acids, the degradation products of V and G nerve agents as VX, Sarin or Soman, is an important task for the verification of compliance to the Chemical Weapons Convention. The detection of these contaminants at low concentration levels is often difficult in complex matrices due to the amount of interfering substances. Molecularly imprinted solid-phase extraction technique should allow a selective extraction of these compounds from complex samples, and thus make their detection easier. Two molecularly imprinted polymers (MIPs) prepared with methacrylic acid (MAA) as monomer and pinacolyl methylphosphonic acid (PMPA) as template molecule were synthesised and tested. The first polymer, MIP A, was prepared with ethylene glycol dimethacrylate (EGDMA) in dichloromethane. The second polymer, MIP B, was synthesised using trimethylolpropane trimethacrylate (TRIM) in acetonitrile. To evaluate the selectivity provided by these MIPs, the retention of the ethyl methylphosphonic acid (EMPA) target molecule was studied in parallel on a non-imprinted polymer (NIP). While MIP A does not show any difference compared to NIP A, a good selectivity was obtained for MIP B. After the optimisation of the extraction process, 60% of EMPA can be removed from the NIP B without affecting the retention on the MIP B. A recovery of extraction of 93% was then obtained on the MIP B. Its capacity was then measured and corresponds to 97 microg of EMPA per gram of MIP. Finally, the selectivity of MIP B was clearly demonstrated by applying it to the clean-up of a soil extract spiked with EMPA.  相似文献   

19.
以锌原卟啉(ZnPP)为功能单体,甲基丙烯酸为共功能单体合成了生物碱基———胞嘧啶的分子印迹聚合物.通过静态吸附紫外检测的方法,对印迹和非印迹聚合物与胞嘧啶及腺嘌呤、尿嘧啶、胸腺嘧啶的结合特性分别进行了对比,分子印迹聚合物(MIP)与非分子印迹聚合物(NMIP)对胞嘧啶的吸附率差值为20.8%,远远高于其他三种碱基,说明MIP对胞嘧啶具有分子识别能力,实现了对胞嘧啶的分子识别.  相似文献   

20.
Qu S  Wang X  Tong C  Wu J 《Journal of chromatography. A》2010,1217(52):8205-8211
A new molecularly imprinted polymer (MIP) targeting to quinolones (Qs) and tetracyclines (TCs) was synthesized using itaconic acid (ITA) and ciprofloxacin (CIP) as a functional monomer and template molecule, respectively. Factors affecting the overall performance of MIP were investigated, and the results showed that Fe(3+) ion play a vital role in the formation of MIP with high molecular imprinting effect. Meanwhile, the chelating ability of monomer, species of template molecule, as well as the molar ratio of monomer and template also contribute to the performance of the obtained MIP. Cyclic voltammetry verified that, with the participation of Fe(3+) ions, a ternary complex of ITA-Fe(3+)-CIP could be formed before polymerization. Compared with conventional MIP prepared from commonly used monomer, methacrylic acid (MAA), the new MIP show significantly enhanced molecular imprinting effect and higher capacity for specific adsorption of target compounds as revealed by static and dynamic binding experiments. The MIP was successfully used as solid-phase extraction (SPE) adsorbent for enriching a broad spectrum of antibiotics containing beta-diketone structure from surface water sample. HPLC detection showed that high recovery rate (78.6-113.6%) was found in these spiked antibiotics, whereas recovery rate for the non structurally related drugs, epinephrine (EP) and dopamine (DOPA), was very low (4.7-7.6%) on the MIP cartridges. The results demonstrate that the MIP prepared by the strategy proposed in this work, could specifically target to a series of structurally related antibiotics containing beta-diketone structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号