首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphorus tailings and fly ash both are solid wastes and do harm to the environment. Here, they were added into thermoplastic polyurethane (TPU) matrices together with intumescent flame retardants (IFR), and the synergistic effects between IFR and phosphorus tailings or fly ash for improving the flame retardancy of TPU were investigated. The cone calorimeter test (CCT) results indicated that adding phosphorus tailings or fly ash substitute for part of IFR could obtain a better flame retardant effect. The peak heart release rate (PHRR) of TPU/25 wt% IFR composites exhibited a reduction of 77% than that of neat TPU, and the total smoke production presented a reduction of 16%. However, the PHRR value and total smoke production of the sample TPU/20 wt% IFR/5 wt% phosphorus tailings were reduced by 91% and 57%, respectively, compared to that of neat TPU. The dense char promoted by the presence of IFR and phosphorus tailings or fly ash delayed the diffusion of volatile pyrolysis products and transmission of heat and oxygen to the underlying material. Therefore, a certain amount of phosphorus tailings or fly ash can be used as synergistic agents with IFR to enhance the fire safety of TPU materials. From another aspect, it also provides a promising way for recycling use of phosphorus tailings and fly ash.  相似文献   

2.
As one of the most used polyurethane, flexible polyurethane foam (FPUF) still confronted highly flammable problems. However, current flame retardant employed in FPUF deteriorated the other utilization performances, such as mechanical properties. In this work, cerium stannate decorated graphene nanosheets (GNS@Ce2Sn2O7, GCSO) was prepared to fabricate flame retardant FPUF composites. Compared to pure FPUF, the tensile strength and average compression strength of FPUF composites accomplished 100 and 412% increase, respectively, while the average rebound was basically maintained. In contrast to pure FPUF, total heat release and total smoke production of FPUF composites displayed a 42.2 and 75.1% reduction, respectively. Furthermore, the released toxic gases (such as, CO2, CO and NOx) during combustion were greatly decreased. These results were due to the catalytic and barrier effect of GCSO promoting the formation a high-quality char residue with a compact, intact and dense morphology. Therefore, it provides a facile method to fabricate FPUF composites with advanced comprehensive performance for the furniture field.  相似文献   

3.
A novel phosphorus‐containing silicone flame retardant (PDPSI) was prepared by Mannish reaction, and a series of PDPSI/PET composites were prepared by melt blending method. The nuclear magnetic resonance (1H NMR), Fourier transformation infrared (FTIR), and the thermogravimetric analyzer (TGA) results indicated that PDPSI showed network structure and owned good thermal stability, with the char residue of 62.2% at 800°C. The flame retardancy of PDPSI/PET composites was characterized by limiting oxygen index (LOI), vertical burning tests (UL‐94), and cone calorimeter (CCT). The results revealed that the addition amount of PDPSI was 5%, the LOI value of PDPSI/PET composites increased to 27.3%, and UL‐94 test passed V‐0 rating. When the PDPSI loading was 3%, PET composites showed excellent flame retardancy and smoke suppression, with a decrease in the peak heat release rate (PHRR) by 71.19% and the total smoke release (TSP) reduced from 14.4 to 11.1m2. The scanning electron microscopy (SEM) and FTIR results of char residue demonstrated that the flame‐retardant mechanism of PDPSI was solid phase flame retardant. PDPSI catalyzed the aromatization reaction of PET to promote the formation of a dense and continuous carbon layer, finally improving the flame retardancy and smoke suppression properties of PET.  相似文献   

4.
In this paper, an effective flame retardant consisting of hierarchical magnesium hydrate (MH) nanosheets doped with molybdenum trioxide nanoparticles (MO@MH) was successfully synthesized via a hydrothermal process. Then, MO@MH, MH, and MH/MO were respectively incorporated into flexible polyvinyl chloride (fPVC) to prepare a series of composites via melt blending. The results of limiting oxygen index (LOI), UL‐94, and cone calorimetry test showed that MO@MH exhibited better flame retardancy and smoke suppression than MH and MH/MO due to the synergistic effect of MO and MH, and the hierarchical structure of MO@MH. With the addition of 20 phr MO@MH, LOI value of fPVC was increased from 23.9% to 33.8% , and UL‐94 reached V0 rating. The peak heat release rate, total heat release, peak smoke production rate, and total smoke production were decreased to 143.0 kW/m2, 44.9 MJ/m2, 0.0093 m2/s and 29.4 m2, respectively. The thermogravimetric analysis results suggested that MO@MH greatly promoted the dehydrochlorination of fPVC at lower temperature, so that more compact and continuous char residues were formed. The Fourier transform infrared spectroscopy results indicated that MO@MH can prevent chain scission and oxidation of fPVC carbonaceous backbone, and as a result less smoke was released.  相似文献   

5.
In this work, halogen‐free, flame‐retarded polyethylene was investigated to study the effect of inorganic fillers on the improvement of flame retardancy and the suppression of smoke density. Through analyses on the thermal stability and smoke density, it was found that the flame retardancy developed by magnesium hydroxide could effectively be increased by the additional incorporation of zinc borate and talc. Furthermore, a synergistic effect was observed when zinc borate and talc were incorporated together. This result was confirmed by the observation of fire performance with cone calorimetry. A morphological study supported the idea that the improvement in the flame retardancy and the suppression of smoke density was due to hard and compact charred layers formed by the interactions between polymer and inorganic fillers. The charred layers provided a good thermal and flame barrier. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 936–944, 2003  相似文献   

6.
The flame‐retardant microcapsules were successfully fabricated with an aluminum hypophosphite (AHP) core. Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) were used to verify that AHP was encapsulated in the microcapsules, and thermogravimetry analysis showed that microencapsulated AHP (MAHP) possessed higher thermal stability than that of AHP. Then, a flame‐retardant and smoke suppression system for silicone foams (SiFs) was obtained through a synergistic effect of MAHP and zinc borate (2ZnO·3B2O3·3.5H2O). The mechanical properties, flame retardance, and smoke suppression of SiFs with MAHP and zinc borate were tested using the tensile test, limiting oxygen index (LOI) test, UL‐94 test, and cone calorimeter test. The mechanical properties indicated that the tensile strength and elongation at break of SiFs could evidently improve with the incorporation of MAHP. Compared with pure SiF, SiF8 with 4.5‐wt% MAHP and 1.5‐wt% zinc borate could achieve an LOI value of 30.7 vol% and an UL‐94 V‐0 rating, the time to ignition amplified almost six times, the peak heat release rate and total heat release were 51.10% and 46.00% less than that of pure SiF, respectively, the fire performance index increased nearly 13 times, and the fire growth index value was only 13.18% of pure SiF. Moreover, the partial substitution of zinc borate imparted a substantial improvement in both flame retardancy and smoke suppression. Especially, the peak smoke production rate and total smoke production of SiF8 were merely 38.46% and 38.84% of pure SiF.  相似文献   

7.
In this paper, fumaric acid (FA) which was a new type of environmental and low‐cost flame retardant was applied for thermoplastic polyurethane elastomer (TPU). The flame‐retardant properties of TPU were tested using limiting oxygen index, cone calorimeter test, smoke density test, and thermogravimetric/Fourier transform infrared spectroscopy. It has been proved that FA could improve the difficulty of the ignition of the sample; the limiting oxygen index value of the sample (FA‐4) increased by 29.7% when 2.0 wt% FA was added to TPU. The cone calorimeter test showed that FA can greatly reduce heat release and smoke production during the combustion process of TPU composites. For example, compared with the pure TPU, the peak heat release rate and total smoke release of the sample (FA‐4) with 2.0 wt% FA were decreased by 50.8% and 51.5% respectively. The results of smoke density test showed that the luminous flux of the samples contained 0.5 wt% FA was increased by 79.2% compared with the pure TPU. The TG results revealed that the sample of FA‐4 had higher char residue content compared with the sample of TPU. The results of thermogravimetric/Fourier transform infrared spectroscopy proved that FA could decrease the initial decomposition temperature for TPU composites and increase the release of CO2 and H2O. All results of test illustrated that FA had good flame‐retardant effect on TPU.  相似文献   

8.
In the present work, lanthanum phenylphosphonate (LaPP)–based multilayered film was fabricated on the surface of flexible polyurethane (PU) foam by layer‐by‐layer self‐assembled method. The successful deposition of the coating was confirmed by scanning electron microscopy (SEM) and energy‐dispersive X‐ray (EDX). Subsequently, the thermal decomposition and burning behavior of untreated and treated PU foams were investigated by thermogravimetric analysis (TGA) and cone calorimeter, respectively. The TGA results indicated that Tmax2 of treated PU foams were increased by approximately 15°C to 20°C as compared with untreated PU foam. The peak heat release rate (PHRR) and total heat release (THR) of PU‐6 (with 19.5 wt% weight gain) were 188 kW/m2 and 20.3 MJ/m2, with reductions of 70% and 15% as compared with those of untreated PU foam, respectively. Meanwhile, the smoke production of treated PU foam was suppressed after the construction of LaPP‐based coating.  相似文献   

9.
Heptamolybdate (Mo7O246?) was intercalated in the interlayer space between MgAl‐layered double hydroxides (Mo‐MgAl LDHs) by the hydrothermal and ion exchange method, and then polyurethane elastomer (PUE) based composites were prepared by the prepolymerization method with different amounts of Mo‐MgAl LDHs. X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, laser Raman spectroscopy (LRS), and scanning electron microscopy (SEM) were employed to characterize the obtained LDHs. The performance of the PUE/LDHs were evaluated by measuring their thermal gravimetric, heat release rate (HRR), and smoke density (Ds). The results show that PUE/LDH composites exhibit a lower peak heat release rate (pk‐HRR), Ds, and a prolonged combustion time, in comparison with neat PUE. Comparison between NO3‐MgAl LDHs and Mo‐MgAl LDHs containing composites show that the introduction of Mo6+ is able to facilitate flame retardance and smoke suppression efficiency, which results mainly from the presence of MoO3 derived from the decomposition of Mo7O246? intercalated LDHs. Mo‐MgAl LDHs reduce the pk‐HRR of composites by 39% with only 1 wt.% content, and the maximum Ds of composites is reduced to a minimal value of 274 with 10 wt.% Mo‐MgAl LDHs. More importantly, LDHs would improve the mechanical properties at a low content. The experimental results reveal the potential of Mo7O246? intercalated LDHs to improve both the flame retardancy and smoke suppression of PUE. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, a new kind of co‐modified phenolic foam was synthesized with polyurethane prepolymer (PUP) and H3BO3 by a simple preparation method. Firstly, in order to determine the optimal amount of PUP, the effects of different PUP additions on the mechanical properties, foam microstructure, and pulverization rate of phenolic foam were investigated. Then H3BO3 was added to toughened phenolic foam, in order to reduce its fire hazard. The results showed that the mechanical properties of the PFPUP8 phenolic foam composite were the best when the PUP content was 8 wt%. It had a small and regular cell structure, and its pulverization ratio was reduced by 80% compared with that of pristine phenolic foam. Meanwhile, the flame retardant properties of PFPUP8 were improved in different degrees with an increase in the amount of H3BO3. Particularly, when the addition of H3BO3 was 10 wt%, the peak heat release rate, the total heat release, and the total smoke release values of PFPUP10B were decreased by 35.4%, 42.4%, and 45.2%, respectively, compared with those of PFPUP8. The value of the limit oxygen index was increased by 33.1%. Besides, the addition of H3BO3 had no adverse effect on the mechanical properties and pulverization ratio of PFPUP8. In addition, the specific mechanisms of toughening, flame retardant, and smoke suppression are also discussed in this paper on the basis of an investigation into the thermal properties of the toughened flame retardant foam composites by thermogravimetric analysis in N2 atmosphere.  相似文献   

11.
This paper presents an overview of the recent literature on flame retardancy of poly(vinyl chloride) (PVC). A short overview of mechanisms of thermal decomposition of PVC, especially those which lead to char formation, is also presented because this gives insight into the mechanisms of flame retardant action. New developments in the area are mostly focused on combinations of various flame retardants and smoke suppressants in the search for synergistic effects. Because different additives show different mechanisms of action, synergistic combinations are very probable. New developments in phosphate ester plasticizers are reported in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
In order to improve the flame retardant of polylactide (PLA), the synergistic effect of graphitic carbon nitride (g‐C3N4) with commercial‐available flame retardants melamine pyrophosphate (MPP) and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) was investigated. The PLA composites containing 5 wt% g‐C3N4 and 10 wt% DOPO had a highest limited oxygen index (LOI) value of 29.5% and reached the V‐0 rating of UL‐94 test. The cone calorimeter tests exhibited that DOPO had a better synergistic effect with g‐C3N4 than MPP to improve flame retardancy of PLA. The peak heat release rate (pHRR) and total heat release (THR) of PLA composites containing 10 wt% DOPO could be reduced by 25.2% and 23.6%, respectively, as compared with those of pure PLA. The presence of rich phosphorus element and aromatic groups in DOPO contributed to obtain continuous compact char layer and increase the graphitization level of char residues, thereby, resulting in improving the flame retardancy of PLA together with g‐C3N4. In addition, the incorporation of DOPO can serve as a plasticizer to reduce the complex viscosity, improving the processability of PLA composites.  相似文献   

13.
Graphene‐polyaniline/nickel hydroxide ternary hybrid (RGO‐PANI/Ni(OH)2) was synthesized and incorporated into epoxy resin (EP) to improve the fire retardant property. Thermogravimetric analysis results showed that the RGO‐PANI/Ni(OH)2 nanohybrid could catalyze the thermal degradation of epoxy matrix that was essential to trigger the char formation. The char yield of the RGO‐PANI/Ni(OH)2/EP composite was improved compared with that of the samples with graphene and polyaniline only. With 3.0‐wt% RGO‐PANI/Ni(OH)2, significant reduction in peak heat release rate (40%) and peak smoke production rate (36%) was observed in the cone calorimeter tests. Thermogravimetric analysis/infrared spectrometry (TG‐IR) results indicated that the flammable volatiles of the RGO‐PANI/Ni(OH)2/EP composite was reduced compared with those of the EP and RGO‐PANI/EP. The superior flame retardant and smoke suppressant behaviors of the RGO‐PANI/Ni(OH)2 nanohybrid over RGO‐PANI were attributed to the combination of good barrier effect of graphene with catalytic ability of char formation of PANI and metal hydroxide.  相似文献   

14.
The thermal and fire properties of polystyrene (PS) flame retarded by a system composed of ammonium polyphosphate (APP) and wollastonite (W) were investigated by thermogravimetric analysis, pyrolysis‐combustion flow calorimeter, pyrolysis gas chromatography mass spectrometry, cone calorimetry and epiradiator. The combustion residues were observed by scanning electron microscopy/energy dispersive X‐ray spectroscopy and analyzed by X‐ray diffraction. The combination of both additives enables increasing the thermal stability of PS while increasing simultaneously the high temperature residue. The peak of HRR was also significantly reduced while time to ignition varied depending on the composition. It was shown that the degradation pathway of PS was affected by the presence of the additives implying a reduction of the effective heat of combustion. In the condensed phase, APP decomposition promotes char formation and favors the reactivity between phosphorus and silicate. A layer composed of char, W and a mixture of calcium and silicon phosphate is formed at the sample surface during combustion. This layer is cohesive enough to limit the release of combustible gases to the gas phase. Moreover, the thermally stable protective layer reaches high temperature enabling the re‐irradiation of a part of the incident heat flux. The flame retardancy of PS is thus enhanced. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Polypropylene (PP) is melt-compounded in a twin-screw extruder with surface-modified decabromodiphenyl ethane/antimony trioxide (DBDPE/Sb2O3) and organically modified montmorillonite (OMMT). The intercalation and dispersion microstructure of OMMT in the nanocomposites are investigated by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Thermal stability and char residue are characterized by thermogravimetric and differential thermal analysis (TGA–DTA). Flame retardant properties are evaluated by limited oxygen index (LOI) and UL-94 vertical burning test.The results indicate that better flame retardancy can be achieved for the composite containing a modified mixture DBDPE/Sb2O3. The presence of DBDPE/Sb2O3 could improve the dispersion of OMMT in polypropylene, leading to higher thermal stability and more char residue. A synergistic effect between OMMT and DBDPE/Sb2O3 has been observed and discussed.  相似文献   

16.
A novel thermally conductive Polyamide 6 (PA6) with good fire resistance was prepared by introducing a phosphorous-nitrogen flame retardant (FR) and platelet-shaped hexagonal boron nitride (hBN) into the matrix. With high thermal conductivity and good flame retardancy, the material is suitable for applications in electronic and electrical devices. The limiting oxygen index (LOI) changes for various loadings content of FR. However this formulation still does not show an ideal fire resistance, due to the appearance of melt dripping behavior during the UL 94 test. With the extra introduction of 3 vol% and 5 vol% hBN, the melt dripping behavior during the burning process completely disappeared. The hBN also increased the thermal conductivity. Furthermore PA6 compounded with FR and hBN showed a better thermal stability than neat PA6. The morphology of the char residues was investigated by scanning electron microscopy (SEM). The flaky hBN acted as the framework in the char structure and the rigid hBN could effectively break the bubble-shaped char on the surface of the residues which resulted in the enhancement of the strength and compactness of the char.  相似文献   

17.
通过过氧化途径,在低温(100℃)且不使用模板和有机溶剂的条件下,成功制备了具有良好荧光性能的三氧化钼(MoO3)纳米带水溶胶.利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、荧光光谱仪、荧光显微镜等表征手段对所制备溶胶的结构及性能进行了表征.结果显示,溶胶是由长度约为100μm,宽度为50nm到100nm,厚度小于10nm的MoO3纳米带组成.所制备的溶胶烘干后可以得到大面积的MoO3纳米带薄膜,薄膜具有很好的韧性.荧光光谱图及荧光显微镜照片显示,纳米带溶胶及干燥后所得到的自支撑(free standing)纳米带薄膜均具有良好的荧光性能,表明其在光学成像、传感及LED等方面具有很好的应用前景.  相似文献   

18.
A novel DOPO‐based pyrazine derivative 6‐((2‐hydroxyphenyl)(pyrazin‐2‐ylamino)methyl)dibenzo[c,e][1,2]oxaphosphinine 6‐oxide (DHBAP) was triumphantly synthesized by a two‐step addition reaction using 2‐aminopyrazine, 2‐hydroxybenzaldehyde and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) as reactants, and characterized by Fourier‐transform infrared (FTIR), 31P nuclear magnetic resonance (NMR) and 1H NMR. Afterwards, the addition type flame retardant (DHBAP) was utilized to modify epoxy resin (EP) by blending method. When the content of DHBAP in neat EP was 8 wt%, it reached to the V‐0 rating and the limited oxygen index (LOI) value up to 34.0%. Furthermore, according to the cone calorimeter (CC) test results, the heat release rate (HRR), total heat release (THR), smoke produce rate (SPR) and total smoke production (TSP) of EP/8% DHBAP decreased by 26.3%, 21.3%, 37.0% and 60.9% when compared with neat EP, respectively, indicating that DHBAP had good inhibition on heat and smoke releases. Eventually, the flame‐retardant mechanism of DHBAP was further explored by X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, and pyrolysis‐gas chromatography/mass spectrometry (Py‐GC/MS). The results showed that DHBAP had good flame‐retardant activity in the gasous‐condensed two phases.  相似文献   

19.
In this paper, silicone‐coated intumescent flame retardants was prepared by an efficient and simple approach, aiming at enhancing the flame‐retardant efficiency and smoke suppression properties. The surface of expandable graphite (EG) was treated prior to the coverage of nonflammable silicone. The resultant silicone‐modified EG hybrid (SEG) was combined with ammonium polyphosphate (APP) and applied as a flame‐retardant and smoke‐suppressant for ultrahigh molecular weight polyethylene (UHMWPE). Compared with UHMWPE/APP/EG (with 15 wt% APP/EG), UHMWPE/APP/SEG (with 15 wt% APP/SEG) gives decrement by 18.5% in the peaks of the heat release rate, 6.33% in total heat release and 13.6% in total smoke release, whereas increment by 23% in tensile strength and 12.1% in elongation at break, respectively. It is suggested that the introduction of silicone on the surface of EG can improve the interfacial compatibility between EG and UHMWPE. Moreover, it can lead to forming more char residue and reducing the release of smoke particulates during combustion process of the composites.  相似文献   

20.
A new phosphinated acetoxybenzoic acid, 1‐(4‐acetoxyphenyl)‐1‐(4‐carboxylphenyl)‐1‐(6‐oxido‐6H‐dibenz<c,e><1,2> oxaphosphorin‐6‐yl)ethane (3), was prepared by a three‐step procedure. Phosphinated copolyesters based on the acidolysis and polycondensation of (3) with poly(ethylene terephthalate) (PET) were prepared. The crystallinity of copolyesters decreased gradually with the content of (3), as shown in wide‐angle X‐ray diffractograms and differential scanning calorimetry thermograms. Dynamic mechanical analysis and thermal mechanical analysis show Tg increased with the content of (3). UL‐94 flame retardant test shows that the flame resistance of PET was enhanced with the content of (3), and a copolyester with UL‐94 V‐0 grade can be achieved with a phosphorus content as low as 1.43 wt %. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 424–434  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号