首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adverse effects of a high‐water absorption rate on properties of a glass fiber–reinforced polyamide 6 (GF‐PA6) composite significantly reduce performance and limit application in humid environments. In this paper, a polyfunctional silane (PFS) coupling agent with amino (–NH2) and imino (–NH) groups and styrene acrylonitrile copolymer (SAN) were added to a composite, GF‐PA6, to prepare GF‐PA6/SAN/PFS composites via melt blending in a twin‐screw extruder. The effects of SAN and PFS content on the static and dynamic mechanical properties of the composites before and after water absorption were investigated in detail. The microstructure of the fracture surface was analyzed by a scanning electron microscope (SEM). The results show that the addition of SAN and PFS could effectively inhibit water absorption of the GF‐PA6 composites. The alkoxyl groups on PFS reacted chemically with the nitrile groups of SAN, which enriched SAN on the interface between the fiber and matrix during the extrusion and mixing process to improve the effect of water prevention. Therefore, the mechanical properties of the wet state were notably improved while preventing water from permeating the interface by only the addition of a small amount of SAN and PFS. Dynamic mechanical analysis (DMA) results showed that the addition of PFS improved the compatibility of PA6 with SAN and enhanced the interface adhesion between fiber and PA6. In terms of test result of the comprehensive performance, 10 phr SAN with 0.6 phr PFS was the best dosage.  相似文献   

2.
A novel glass fiber reinforced composite was prepared by using silicon‐containing hybrid polymers, poly(methylhydrogen‐diethynylsilyene) (PMES) and poly(phenylethynyl‐silyloxide‐phenylborane) (APABS), as matrix resins. The curing behavior and rheological properties of the matrix resins were investigated by differential scanning calorimetry (DSC) and rotational rheometer. The dynamic viscoelastic properties, mechanical properties, and microstructures of the composites were studied by dynamic mechanical analysis (DMA), universal testing machine (UTM), and scanning electron microscopy (SEM), respectively. The results show that the composite can be well cured between 200 and 300 °C through reactive groups like Si‐H, N‐H, and C≡C units, the possible thermosetting mechanism is also proposed. The composites exhibit excellent mechanical properties with bending strength reach up to 261 and 178 MPa before and after heat‐treating, respectively. SEM analysis clearly indicates that crack in the matrix, matrix/fiber interface debonding, and fiber pull out are predominate failure mechanism for the composites which are heat‐treated in different temperatures. All these obtained results can give theoretical guiding reference for their further applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Epoxy resin nanocomposites with different contents of multiwalled carbon nanotubes (MWNTs) are prepared. The interaction between MWNTs and the epoxy resin matrix and the microstructure and mechanical properties of the composites are systematically investigated by Fourier‐transform infrared (FTIR) spectroscopy, transmission electron microscopy, scanning electron microscopy, and positron annihilation technology. FTIR spectra reveal that two kinds of hydrogen bonds exist at the interface for the nanocomposites modified by amine, one between the epoxy group on the side chain and the NH group, and the other between the epoxy group on the alicycle and the NH group. Compared to unmodified MWNT composites, the modified MWNT composites possess better mechanical properties, which are attributed to stronger interfacial interaction resulting from an efficient load transfer from matrix to MWNTs. Positron annihilation lifetime spectroscopy is used to characterize the microstructure of the epoxy/MWNT composites. The subtransition and glass transition temperatures are determined by finite‐term positron lifetime analysis and the variation of the free‐volume size as a function of temperature. Shifts of structure transition temperatures of the composites are observed with increasing MWNT weight content. Interestingly, the continuous lifetime analysis reveals the existence of two long‐lived lifetime components above the glass transition temperature, which may be attributed to the formation of local ordered regions related to the packing density of chains.  相似文献   

4.
Bismaleimide‐modified novolak resin/silsesquioxane (BMI‐PN/SiO3/2) nanocomposites were prepared by the sol–gel process. The reactions in the sol–gel synthesis were characterized by Fourier transform infrared spectroscopy. It was found by field emission scanning electron microscopy and atomic force microscopy studies that the particle size of the dispersed phase was about 100 nm, and there existed particle aggregates. The proportion of bismaleimide in the BMI‐PN/SiO3/2 nanocomposites showed an important effect on the thermal properties of the composites, as demonstrated by thermogravimetric analysis and dynamical mechanical analysis. Major improvements in the glass‐transition temperature and the heat resistance of the material were achieved by the introduction of the nanosized SiO3/2 inorganic phase, and the modulus at high temperatures was improved too. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2599–2606, 2003  相似文献   

5.
The reduced graphene oxide (RGO)/bisphenol A (BPA) composites were prepared by an adsorption‐reduction method. The composites are characterized by X‐ray diffraction (XRD), UV‐vis, thermogravimetric (TG) analysis, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM). The results confirm that BPA is adsorbed on the basal plane of RGO by π‐π stacking interaction. Furthermore, the electrochemical behaviors were evaluated by cyclic voltammetry, galvanostatic charge/discharge techniques and electrochemical impedance spectroscopy (EIS). The results show that the RGO/BPA nanocomposites exhibit ultrahigh specific capacitance of 466 F·g?1 at a current density of 1 A·g?1, excellent rate capability (more than 81% retention at 10 A·g?1 relative to 1 A·g?1) and superior cycling stability (90% capacitance decay after 4000 cycles). Consequently, the RGO/BPA nanocomposites can be regarded as promising electrode materials for supercapacitor applications.  相似文献   

6.
The aim of the present study was to investigate and compare the mechanical properties of untreated and chemically modified Borassus fiber–reinforced epoxy composites. Composites were prepared by the hand lay-up process by reinforcing Borassus fibers with epoxy matrix. To improve the fiber-matrix adhesion properties, alkali (NaOH) and alkali combined with silane (3-aminopropyltriethoxysilane) treatment of the fiber surface was carried out. Examinations through Fourier transform-infrared spectroscopy and scanning electron microscopy (SEM) were conducted to investigate the structural and physical properties of the Borassus fibers. Tensile properties such as modulus and strength of the composites made with chemically modified and untreated Borassus fibers were studied using a universal testing machine. Based on the experimental results, it was found that the tensile properties of the Borassus-reinforced epoxy composites were significantly improved as compared with the neat epoxy. It was also found that the fiber treated with a combination of alkali and silane exhibited superior mechanical properties to alkali-treated and untreated fiber composites. The nature of the fiber/matrix interface was examined through SEM of cryo-fractured samples. Chemical resistance of composites was also found to be improved with chemically modified fiber composites.  相似文献   

7.
采用在转矩流变仪中熔融混合的方法制备了聚甲醛(POM)/多壁碳纳米管(MWCNTs)/玻璃纤维(GF)和POM/炭黑(CB)/GF复合材料,研究了GF的加入对复合材料的导电性能、结晶行为和动态力学性能的影响.采用场发射扫描电镜(FESEM)观察了复合材料中导电填料的分散状态,发现GF的加入对MWCNTs和CB的分散状态没有明显影响.虽然GF为导电惰性填料,但因其加入起到了占位作用,明显提高了导电填料的有效浓度,从而使复合材料的体积电阻率明显降低.采用示差扫描量热仪(DSC)研究了复合材料中POM的结晶行为,发现GF的加入对POM的结晶温度、熔点和结晶度均无明显影响.采用动态机械分析仪(DMA)对复合材料的动态力学性能进行了研究,表明GF的加入能够明显地提高复合材料的储能模量.  相似文献   

8.
Composites based on conductive organic/inorganic fillers dispersed in insulating matrix have been widely investigated because of their widespread applications such as electromagnetic shielding, electrostatic discharge, and sensors. In this context, novel composite materials based on epoxy resin matrix charged with polyaniline (PANI)‐doped para‐toluene sulfonic acid were elaborated. Fourier transform infrared spectroscopy, X‐ray diffraction and scanning electron microscopy were used to check the structure and the morphology of the samples. Viscoelastic behavior and thermal stability of the composites were explored by dynamic mechanical thermal analysis and thermogravimetric analysis. It was shown that the PANI particles exhibited a partial crystalline structure and were homogeneously dispersed in epoxy matrix. Consequently, this structure affected the thermal stability and viscoelastic properties of the composites. Furthermore, the dielectric and electrical properties were investigated up to 1 MHz. Measurements of dielectric properties revealed that with loading fillers in matrix, the dielectric parameters increased to high values at low frequency then decreased at values around 40 and 32 of real and imaginary parts, respectively, at 1 MHz with 15% of PANI content. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
An intercrosslinked network of bismaleimide modified polyurethane‐epoxy systems were prepared from the bismaleimide having ester linkages, polyurethane modified epoxy and cured in the presence of 4,4′‐diaminodiphenylmethane. Infrared spectral analysis was used to confirm the grafting of polyurethane into the epoxy skeleton. The prepared matrices were characterized by mechanical, thermal and morphological studies. The results obtained from the mechanical and thermal studies reveal that the incorporation of polyurethane into the epoxy skeleton increases the mechanical strength and decreases the glass transition temperature, thermal stability and heat distortion temperature. Whereas, the incorporation of bismaleimide having ester linkages into polyurethane modified epoxy systems increases the thermal stability, tensile and flexural properties and decreases the impact strength, glass transition temperature and heat distortion temperature. Surface morphology of polyurethane modified epoxy and bismaleimide modified polyurethane‐epoxy systems were studied using scanning electron microscopy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Hydroxyl terminated poly(ether sulfone) (PES) has been grafted on multi‐walled carbon nanotube (MWCNT). The grafting reaction was confirmed by different characterization techniques such as Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The extent of the grafting was found to be around 58 wt%. Hybrid nanocomposite of epoxy with the modified MWCNT was also prepared. Effect of grafting on the mechanical, thermal, and viscoelastic properties was studied. Dynamic mechanical studies show an increase in the storage modulus for the nanocomposite prepared using PES‐grafted MWCNT compared with neat epoxy system. PES‐grafted MWCNT–epoxy nanocomposite induces a significant increase in both tensile strength (26%) and fracture toughness (125%) of the epoxy matrix. Field emission scanning electron micrographs of fractured surfaces were examined to understand the toughening mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Graphene oxide (GO) was functionalized using three different diamines, namely ethylenediamine (EDA), 4,4′-diaminodiphenyl sulfone (DDS) and p-phenylenediamine (PPD) to reinforce an epoxy/glass fiber (EP/GF) composite laminate, with the aim of improving the overall composite mechanical performance. Different mechanical characterization techniques were used to determine the mechanical performance, including: tensile stress strain, double cantilever beam (DCB) mode-I fracture toughness and dynamic mechanical thermal analysis (DMTA). Scanning electron microscopy (SEM) was used to support the results and conclusions. The results demonstrated remarkable enhancements in the mechanical performance of EP/GF composite laminates by incorporation of functionalized graphene oxide (FGO) nanofiller, whilst the mechanical performance of the GO reinforced composite only improved marginally. Finally, the mechanical performance of the EP/GF/FGO multi-scale composites was found to be dependent on the type of FGO functional groups; of which EDA exhibited the highest performance. These investigations confirmed that the EDA-FGO-reinforced EP/GF composites possess excellent potential to be used as multifunctional engineering materials in industrial applications.  相似文献   

12.
《先进技术聚合物》2018,29(4):1322-1333
This work aims to develop novel composites from a poly(L ‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG) terpolymer and mesoporous silica (SBA‐15) nanofillers surface modified by post‐synthetic functionalization. SBA‐15 first reacts with a silane coupling agent, γ‐aminopropyl‐trimethoxysilane to introduce ammonium group. PLLA chains were then grafted on the surface of SBA‐15 through ammonium initiated ring‐opening polymerization of L ‐lactide. Composites were prepared via solution mixing of PLTG terpolymer and surface modified SBA‐15. The structures and properties of pure SBA‐15, γ‐aminopropyl‐trimethoxysilane modified SBA‐15 (H2N‐SBA‐15), PLLA modified SBA‐15 (PLLA‐NH‐SBA‐15), and PLTG/PLLA‐NH‐SBA‐15 composites were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, N2 adsorption‐desorption, differential scanning calorimetry, contact angle measurement, and mechanical testing. The results demonstrated that PLLA chains were successfully grafted onto the surface of SBA‐15 with grafting amounts up to 16 wt.%. The PLTG/PLLA‐NH‐SBA‐15 composites exhibit good mechanical properties. The tensile strength, Young's modulus, and elongation at break of the composite containing 5 wt.% of PLLA‐NH‐SBA‐15 were 39.9 MPa, 1.3 GPa, and 273.6%, respectively, which were all higher than those of neat PLTG or of the composite containing 5 wt.% of pure SBA‐15. Cytocompatibility tests showed that the composites present very low cytotoxicity.  相似文献   

13.
聚丙烯混杂复合体系的界面和力学性能   总被引:9,自引:0,他引:9  
从刚性粒子增韧聚合物体系的界面层性质入手,研究了带有柔性分子链界面改性剂包覆的高岭土(Kaolin)刚性粒子增韧的,短切玻纤(GF)增强的聚丙烯(PP)混杂复合体系的微观结构,结晶性质,PP/Kaolin/GF混杂复合材料的加工流动性及力学性能.实验结果表明,所合成的界面改性剂对PP/Kaolin复合材料有显著的增韧效果;加入少量的短切玻纤可以弥补因界面改性剂引入而引起的PP/Kaolin复合材料强度和模量降低的缺点;经界面改性剂包覆的高岭土刚性粒子和短切玻纤同时加入PP,混杂复合后,PP复合材料的冲击韧性大幅度提高,材料的强度和模量不降低.这个结果不仅在较低的Kaolin含量下,而且可在Kaolin含量为50%(wt%)的高填充量下也得以实现  相似文献   

14.
Three kinds of poly(urea‐formaldehyde) (PUF) microcapsules filled with epoxy resins (MCEs) were applied to bismaleimide (BMI)/O,O′‐diallyl bisphenol A (BA) system to develop novel fiber reinforced BMI/BA/MECs composites. The effects of MCEs on the mechanical properties, the hot‐wet resistance, and the dynamic mechanical properties of fiber reinforced BMI/BA composites were investigated. The morphologies of fiber reinforced BMI/BA/MCEs composites were characterized by scanning electron microscope (SEM) and optical microscope (OM). Results indicate that the appropriate contents of MCEs can significantly improve the mechanical properties and the hot‐wet resistance of fiber reinforced BMI/BA composites. In this study, MCEs may decrease the storage modulus of fiber reinforced BMI/BA composite but they have no significant influence on the glass transition temperature (Tg) of the composite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Epoxy/glass fiber hybrid composites with organo-montmorillonite (OMMT) and decabromodiphenyl oxide (DBDPO) flame retardants were prepared by vacuum-assisted resin infusion technique. The effects of OMMT and DBDPO on the flammability properties of epoxy/glass fiber hybrid composites were evaluated through UL-94 vertical flammability test and limiting oxygen index (LOI). Thermal decomposition was studied by means of thermogravimetric analyzer (TG). Field emission scanning electron microscopy (FESEM) was used to study the char morphology of the epoxy hybrid composites after being subjected to UL-94 vertical flammability test. Epoxy/glass fiber/OMMT hybrid composites with DBDPO loading of 40 wt% showed V-1 rating, whereas an increase to 50 wt% loading showed V-0 rating. The LOI values increased from 22.7 to 39.9 % as the loading of DBDPO increased. The obtained TG results showed that the thermal stability of epoxy hybrid composites decreased as the DBDPO loading increased. DBDPO decomposed at a lower temperature to form bromine radicals, which reacted with the combustible gases to form hydrogen bromide to inhibit the flame spread in the gas phase. The condensed phase activity was shown in FESEM, in which a layer of compact and continuous char was formed in epoxy/glass fiber/OMMT/DBDPO hybrid composites.  相似文献   

16.
The mechanical properties of carbon fiber composites depend on the interfacial strength between fiber and epoxy matrix. Different poly (amido amine) (PAMAM) dendrimers were grafted onto carbon fiber to improve the interfacial strength of the resulting composites. Functional groups on the carbon fiber surface were examined by X-ray photoelectron spectroscopy. The surface morphology of the resulting materials was characterized by scanning electron microscopy and atomic force microscope. The characterization results revealed that PAMAM dendrimers were chemically grafted onto the surface of carbon fiber. More importantly, the mechanical properties of the resulting composites were enhanced owing to the presence of sufficient functional groups on the carbon fiber surface. In addition, after PAMAM containing chair conformations were grafted, the interlaminar shear strength had the highest increase of 53.13%, higher than that of the fiber grafted with PAMAM containing terminated linear amine. This work provides an alternative approach to enhance the mechanical properties of fiber composites by controlling the interface between fiber and epoxy matrix.  相似文献   

17.
《先进技术聚合物》2018,29(4):1287-1293
The surface treatment of ultra‐high molecular weight polyethylene fiber using potassium permanganate and the mechanical properties of its epoxy composites were studied. After treatment, many changes were happened in the fiber surface: more O‐containing groups (―OH, ―C═O, and ―C―O groups), drastically decreased contact angles with water and ethylene glycol, slightly increased melting point and crystallinity, and formed cracks. Different contents (0.1–0.5 wt%) ultra‐high molecular weight polyethylene fibers/epoxy composites were prepared. The results indicated that the surface treatment decreased the tensile strength of epoxy composites, but increased the bending strength. When the fiber content was 0.3 wt%, the above properties reached the maximum. At the same fiber content, the interlaminar shear strength of the composites was increased by 26.6% up to the as‐received fiber composites. Dynamic mechanical analysis of the composites suggested the storage modulus and tanδ were decreased due to the surface treatment. Fractured surface analysis confirmed that the potassium permanganate treatment was effective in improving the interface interaction.  相似文献   

18.
Poly(2,2,3,4,4,4-Hexafluorobutylmethacrylate–random–glycidolmethacrylate) random copolymer (P(HFBMA-r-GMA)) was synthesized via free radical polymerization. The novel reactive random copolymer was incorporated to modify cycloaliphatic epoxy resins and obtain the nano- or micro- structured composites. The chemical structures of P(HFBMA-r-GMA) were confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The morphology and light transmittance of the cured epoxy resins were observed by scanning electron microscopy (SEM), transmission electron microscope (TEM) and ultraviolet-visible spectrophotometry (UV-vis), respectively. It is indicated that the optical transmittance of composites were basically kept although the microphase separation occurred in the curing process, which has a profound influence on the mechanical properties and refractive indexes. The thermal properties, surface dewettability and water absorbency of the cured epoxy resins were examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), contact angle measurement and immersion test respectively. The experimental results revealed that the values of glass transition temperatures (Tg), surface dewettability and water resistance were effectively improved by the high cross-linking density and the enrichment of the fluorinated random copolymer dispersing in the composites. With respect to the corresponding properties of the neat epoxy resin, P (HFBMA-r-GMA)-0.25 hybrimer embraced the relatively good comprehensive properties, making the modified epoxy resins as good candidates for LED encapsulation.  相似文献   

19.
The effects of β‐cyclodextrin containing silicone oligomer(CDS), as a synergistic agent, on the flame retardancy and mechanical properties of intumescent flame retardant polypropylene composites were studied by adding different amounts of CDS in intumescent flame retardants. The limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were utilized to evaluate the synergistic effects of CDS in the composites. It was found that after a little amount of CDS partially replaced a charring‐foaming agent (CFA) in IFR, LOI values of the composites were enhanced and they obtained a UL‐94 V‐0 rating. IFR system containing 6.25wt% CDS presented the best flame retardancy in PP. The experimental results obtained from LOI and UL‐94, TGA, SEM, and mechanical properties indicated that the combination of CDS and CFA presents synergistic effects in flame retardancy, char formation, and mechanical properties of the composites. This is probably due to different structures of polyhydroxyl macromolecules (CDS and CFA), the existence of dimethyl silicone group in CDS, and the toughness of epoxy silicon chain in CDS. SEM results proved that the interfacial compatibility between IFR and PP was improved by CDS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A novel phosphorus‐containing compound diphenyl‐(1, 2‐dicarboxylethyl)‐phosphine oxide defined as DPDCEPO was synthesized and used as a flame retardant curing agent for epoxy resins (EP). The chemical structure of the prepared DPDCEPO was well characterized by Fourier transform infrared spectroscopy, and 1H, 13C and 31P nuclear magnetic resonance. The DPDCEPO was mixed with curing agent of phthalic anhydride (PA) with various weight ratios into epoxy resins to prepare flame retardant EP thermosets. The flame retardant properties, combustion behavior and thermal analysis of the EP thermosets were respectively investigated by limiting oxygen index (LOI), vertical burning tests (UL‐94), cone calorimeter measurement, dynamic mechanical thermal analysis and thermogravimetric analysis (TGA) tests. The surface morphologies and chemical compositions of the char residues for EP thermosets were respectively investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy (XPS). The water resistant properties of the cured EP were evaluated by putting the samples into distilled water at 70°C for 168 hr. The results revealed that the EP/20 wt% DPDCEPO/80 wt% PA thermosets successfully passed UL‐94 V‐0 flammability rating and the LOI value was as high as 33.2%. The cone test results revealed that the incorporation of DPDCEPO effectively reduced the combustion parameters of the epoxy resin thermosets, such as heat release rate and total heat release. The dynamic mechanical thermal analysis test demonstrated that the glass transition temperature (Tg) decreased with the increase of DPDCEPO content. The TGA results indicated that the incorporation of DPDCEPO promoted the decomposition of epoxy resin matrix ahead of time and led to a higher char yield and thermal stability at high temperatures. The surface morphological structures and analysis of the XPS of the char residues of EP thermosets revealed that the introduction of DPDCEPO benefited the formation of a sufficient, compact and homogeneous char layer with rich flame retardant elements on the epoxy resin material surface during combustion. The mechanical properties and water resistance of the cured epoxy resins were also measured. After water resistance tests, the EP/20 wt% DPDCEPO/80 wt% PA thermosets retained excellent flame retardancy, and the moisture adsorption of the EP thermosets decreased with the increase of DPDCEPO content in EP thermosets because of the existence of the P–C bonds and the rigid aromatic hydrophobic structure in DPDCEPO. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号