首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Due to the numerous advantages of nanofibers, there is a strong demand in various fields for nanofibrous structures fabricated by electrospinning. However, the process is currently beset by troublesome limitations with respect to geometric and morphological control of electrospun nanofibrous mats. This study presents a direct-write electrospinning process and apparatus with improved focusing and scanning functionalities for the fabrication of various patterned thick mats and nanofibrous patterns with high geometric fidelity, supported by a number of experimental results. Consequently, various patterned nanofibrous mats were fabricated using the developed method. Additionally, the fabricated mat was successfully used for cell patterning as a bioengineering application. The proposed method is expected to significantly improve the properties and functionalities of nanofibrous mats in a variety of applications.  相似文献   

2.
徐志康 《高分子科学》2013,31(3):514-520
In our previous work, it was found that large Bird’s Nest patterned nanofibrous membranes can be simply electrospun from chlorinated polypropylene solution doped with an ionic liquid, and a plausible formation mechanism of Bird’s Nest patterned architectures was proposed. Here, we use Ansoft Maxwell version 12 software (3D, electrostatic solver) to simulate the electrical field distribution of the electrospinning setup, and to clarify the rationality of proposed formation mechanism. Calculation results clearly show that the introduction of charged nanofibrous bundles would produce a similar patterned electrical field distribution, which definitely confirms the important role of surface residual charges. The proposed mechanism can be well extended to other polymer systems including polystyrene, poly(acrylonitrile-co-acrylic acid) and chitosan/poly(ethylene oxide).  相似文献   

3.
Electrospinning is a versatile and flexible technique for the preparation of ultrafine fibers. The present study aims to provide a comprehensive overview of electrospinning, as a complex technique, its evolution toward the high-throughput techniques, including the basic principles, parameters influencing the fibers production process, methods applied to solve the alignment difficulties, commonly used polymers and solvents, and the applications of the electrospun materials. We begin with an insight into the history of electrospinning, followed by its theoretical background and typical apparatus. Then, its renaissance over the past two decades as a powerful technology for the production of nanofibers suitable for industrial scale is presented. Afterward, we briefly discuss the applications of electrospun fibers, including use in different fields of industry, energy harvesting/conversion/storage, photonic and electronic devices, as well as biomedical applications. In the end, we also offer perspectives on the challenges and new directions for developments in electrospinning.  相似文献   

4.
Electrospun material with bio-inspired ordered architectures and patterns is very interesting,yet remains a challenge.We report here that nanofibrous mats with bird’s nest patterned structures can be directly electrospun from chlorinated polypropylene solutions doped with an ionic liquid.The solution viscosity and the ionic liquid content are two dominant factors to influence the topological morphology of the nanofibrous mats.The patterned structures can be further modulated by the collection time of electrospinning,the humidity of environment and the design of collector.We suggest the electrostatic repulsion between the residual charges of the mat surface and the upcoming nanofibers plays a key role in the formation of the bird’s nest patterns.  相似文献   

5.
Metal–organic frameworks (MOFs) have been proven to be outstanding adsorbent materials which possess excellent pollutant removal performances in wastewater treatment. However, MOFs consumption, loss, or blockage in reactor pipelines as well as the long and complicated recycling process severely limit their practical applications. Therefore, construction of novel MOFs composites with extremely high ease-of-use property has become a research hotspot, such as two-dimensional (2D) MOFs fibrous membranes. In this review, the exploitation of MOFs nanofibrous membranes via electrospinning and their applications in wastewater treatment are summarized. The MOFs nanofibers (NFs) architectures are established systematically by five routes: (1) direct electrospinning of MOFs-polymer; (2) induced growth of MOFs on electrospun NFs containing seeds; (3) growth of MOFs on electrospun organic NFs’ (4) growth of MOFs on electrospun inorganic NFs; and (5) simultaneous electrospinning and electrospraying. Furthermore, the applications of different types of MOFs nanofibrous membranes and their derivatives in water treatment and purification are discussed, including oil-water separation, the removal of heavy metal ions, organic dyes, personal care products, non-steroidal anti-inflammatory drugs (NSAIDs) and so on. The adsorption properties and mechanisms of electrospun MOFs nanofibrous membranes towards various environmental pollutants are discussed. Finally, the challenges of electrospun MOFs NFs, the limitations of their applications, and future development trends are prospected.  相似文献   

6.
In this work, we studied solvent-induced polymer degradation and its effect on the morphology of electrospun fibers. Nylon-6 in formic acid solvent was allowed to degrade by simply allowing it to stand for a long time, and nanofibrous mats were fabricated by taking a fraction of this solution at different time intervals via electrospinning under the same electrospinning conditions. FE-SEM images of the mats indicate that the nanofiber diameter gradually decreased with the standing time of solution, and large numbers of true nano fibers (<50 nm in diameter) were obtained. MALDI-TOF analysis revealed that the formation of low-molecular weight ions was caused by solvent degradation. FT-IR, DSC, XRD, and TGA analyses of electrospun mats showed that some physical properties, such as bond strength, crystallinity, and thermal stability also depended on solvent degradation. The obtained sub-nanofibrous mat has potential applications in different bioengineering fields.  相似文献   

7.
Poly(aniline‐co‐ethyl 3‐aminobenzoate) (3EABPANI) copolymer was blended with poly(lactic acid) (PLA) and co‐electrospun into nanofibers to investigate its potential in biomedical applications. The relationship between electrospinning parameters and fiber diameter has been investigated. The mechanical and electrical properties of electrospun 3EABPANI‐PLA nanofibers were also evaluated. To assess cell morphology and biocompatibility, nanofibrous mats of pure PLA and 3EABPANI‐PLA were deposited on glass substrates and the proliferation of COS‐1 fibroblast cells on the nanofibrous polymer surfaces determined. The nanofibrous 3EABPANI‐PLA blends were easily fabricated by electrospinning and gave enhanced mammalian cell growth, antioxidant and antimicrobial capabilities, and electrical conductivity. These results suggest that 3EABPANI‐PLA nanofibrous blends might provide a novel bioactive conductive material for biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

8.
Electrospinning is a simple and convenient technique to produce polymer fibers with diameters ranging from several nanometers to a few micrometers. Different types of polymer fibers have been prepared by electrospinning for various applications. Among different post‐treatment methods of electrospun polymer fibers, the annealing process plays a critical role in controlling the fiber properties. The morphology changes of electrospun polymer fibers under annealing, however, have been little studied. Here we investigate the annealing effect of electrospun poly(methyl methacrylate) (PMMA) fibers and their transformation into PMMA microspheres. PMMA fibers with an average size of 2.39 μm are first prepared by electrospinning a 35 wt% PMMA solution in dimethylformamide. After the electrospun fibers are thermally annealed in ethylene glycol, a non‐solvent for PMMA, the surfaces of the fibers undulate and transform into microspheres driven by the Rayleigh instability. The driving force of the transformation process is the minimization of the interfacial energy between the polymer fibers and ethylene glycol. The sizes of the microspheres fit well with the theoretical predictions. Longer annealing times are found to be required at lower temperatures to obtain the microspheres.  相似文献   

9.
Nowadays, encapsulated dyes in a polymeric matrix have opened up new perspectives in many applications such as filtration of subatomic particles, composite reinforcement, multifunctional membranes, tissue engineering scaffolds, wound dressing, coatings, medical purposes as well as sensors. In the presented work, we report on electrospinning neat peryelene dianhydride based thermoplastic elastomers. Perylene‐3, 4,9, 10‐tetracarboxylic dianhydride (PDA) is encapsulated into cellulose acetate (CA) electrospun fibers, which was prepared from 12 % cellulose acetate solution, at 20 kV with a distance of 10 cm. The flow rate was 0.2 ml · h–1. These water repellent nanofibrous coatings are anticipated to serve as hydrophobic coatings. Scanning electron microscope is used to study the properties of the electrospun PDA‐CA nanofibers.  相似文献   

10.
A facile fabrication of a cross-linked hyaluronic acid (HA) hydrogel nanofibers by a reactive electrospinning method is described. A thiolated HA derivative, 3,3'-dithiobis(propanoic dihydrazide)-modified HA (HA-DTPH), and poly(ethylene glycol) diacrylate (PEGDA) are selected as the cross-linking system. The cross-linking reaction occurs simultaneously during the electrospinning process using a dual-syringe mixing technique. Poly(ethylene oxide) (PEO) is added into the spinning solution as a viscosity modifier to facilitate the fiber formation and is selectively removed with water after the electrospinning process. The nanofibrous structure of the electrospun HA scaffold is well preserved after hydration with an average fiber diameter of 110 nm. A cell morphology study on fibronectin (FN)-adsorbed HA nanofibrous scaffolds shows that the NIH 3T3 fibroblasts migrate into the scaffold through the nanofibrous network, and demonstrate an elaborate three-dimensional dendritic morphology within the scaffold, which reflects the dimensions of the electrospun HA nanofibers. These results suggest the application of electrospun HA nanofibrous scaffolds as a potential material for wound healing and tissue regeneration. [image: see text] Laser scanning confocal microscopy demonstrates that the NIH3T3 fibroblast develops an extended 3D dendritic morphology within the fibronectin-adsorbed electrospun HA nanofibrous scaffold.  相似文献   

11.
Electrospun zein membranes were prepared using DMF as solvent. By changing the solution concentration, the electrospinning voltage and the distance between the spinneret and collector, nanofibrous meshes without bead defects could be obtained. In order to improve the mechanical strength of the hydrated zein meshes, core-shell-structured nanofibrous membranes with PCL as the core material and zein forming the shell were prepared by coaxial electrospinning. The core-shell structure of the composite fibers was confirmed by SEM characterization of the fibers, either extracted with chloroform to remove the inner PCL, or elongated to expose their cross-section. The composition and average diameter of the composite fibers could be modulated by the feed rate of the inner PCL solution. It was found that the core-shell fibrous membranes have similar wettability to the electrospun zein mesh. The presence of PCL in the fibers could significantly improve the mechanical properties of the zein membrane.  相似文献   

12.
Electrospinning of polycarbonate (PC)/chloroform solution with quaternary ammonium salt (benzyl triethylammonium chloride, BTEAC) was investigated to develop antimicrobial nanofibrous membranes for ultrafiltration. With BTEAC additive, ultrafine PC fibers were continuously generated and densely mounted without the blockage of spinning tip on electrospinning. When small amounts of BTEAC were added to the PC solution, the average diameter was also decreased from several micrometers to submicron range. It was found that the conductivity of the PC solution was a major parameter affecting the morphology and diameter of the electrospun PC fibers as well as the electrospinnability of PC. The nanofibrous membranes electrospun from the PC solution with BTEAC exhibited better excellent antimicrobial activity than those prepared without BTEAC. The PC nanofibrous filter shows a good filtration efficiency to satisfy the criterion of HEPA filter, and the pressure drop of the PC filters are within the normal range. Therefore, PC nanofibrous membrane showed a great potential as a candidate for ultrafiltration, compared to a commercial HEPA filter.  相似文献   

13.
We have fabricated novel nanofibrous fluorinated polyimide membranes on a specially designed collector, which is composed of conductive aluminum plates and glass insulator materials and can be removed from the apparatus, using an electrospinning method. We describe the structure and water flux properties of the nanofibrous fluorinated polyimide membranes. The electrospun nanofibers were deposited across the plates and uniaxially aligned to the collector. In addition, the multi‐layer stacked nanofibrous membranes, consisting of three‐dimensionally ordered nanopores, were produced. The pure water fluxes for the stacked membranes were measured, using a stirred dead‐end filtration cell, and were linearly decreased with an increasing deposition time, indicating that the nanopores formed in the nanofibrous membrane were further narrowed due to the regularly accumulated nanofibers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
电纺丝与聚合物超细纤维   总被引:5,自引:0,他引:5  
电纺丝技术是一种简单易行、成本低廉的纺丝工艺,本文总结和评述了电纺丝的概念、研究范围、研究现状以及在诸多领域的应用,预示了电纺丝技术的发展前景。  相似文献   

15.
Electrospinning is a powerful technique to produce nanofibers of tunable diameter and morphology for medicine and biotechnological applications. By doping electrospun nanofibers with inorganic and organic compounds, new functionalities can be provided for technological applications. Herein, we report a study on the morphology and optical properties of electrospun nanofibers based on the conjugated polymer poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV) and poly(methylmethacrylate) (PMMA). Initially, we investigate the influence of the solvent, surfactant, and the polymer concentration on electrospinning of PMMA. After determining the best conditions, 0.1% MEH‐PPV was added to obtain fluorescent nanofibers. The optical characterizations display the successful impregnation of MEH‐PPV into the PMMA fibers without phase separation and the preservation of fluorescent property after fiber electrospinning. The obtained results show the ability of the electrospinning approach to obtain fluorescent PMMA/MEH‐PPV nanofibers with potential for optical devices applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1388–1394  相似文献   

16.
The objective of this study is to design a novel kind of scaffolds for blood vessel and nerve repairs. Random and aligned nanofibrous scaffolds based on collagen-chitosan-thermoplastic polyurethane (TPU) blends were electrospun to mimic the componential and structural aspects of the native extracellular matrix, while an optimal proportion was found to keep the balance between biocompatibility and mechanical strength. The scaffolds were crosslinked by glutaraldehyde (GTA) vapor to prevent them from being dissolved in the culture medium. Fiber morphology was characterized using scanning electron microscopy (SEM) and atomic-force microscopy (AFM). Fourier transform infrared spectroscopy (FTIR) showed that the three-material system exhibits no significant differences before and after crosslinking, whereas pore size of crosslinked scaffolds decreased drastically. The mechanical properties of the scaffolds were found to be flexible with a high tensile strength. Cell viability studies with endothelial cells and Schwann cells demonstrated that the blended nanofibrous scaffolds formed by electrospinning process had good biocompatibility and aligned fibers could regulate cell morphology by inducing cell orientation. Vascular grafts and nerve conduits were electrospun or sutured based on the nanofibrous scaffolds and the results indicated that collagen-chitosan-TPU blended nanofibrous scaffolds might be a potential candidate for vascular repair and nerve regeneration.  相似文献   

17.
Incorporation of mammalian cells into nanofibers (cell electrospinning) and multilayered cell-nanofiber structures (cell layering) via electrospinning are promising techniques for tissue engineering applications. We investigate the viability of 3T3-L1 mouse fibroblasts after incorporation into poly(vinyl alcohol) nanofibers and multilayering with poly(caprolactone) nanofibers and analyze the possible factors that affect cell viability. We observe that cells do not survive cell electrospinning but survive cell layering. Assessing the factors involved in cell electrospinning, we find that dehydration and fiber stretching are the main causes of cell death. In cell layering, the choice of solvent is critical, as residual solvent in the electrospun fibers could be detrimental to the cells.  相似文献   

18.
Structures modification of fibers has been attracting significant attention in various fields and applications. Among different techniques of fabricating ultrathin fibers, electrospinning is the most commonly adopted method because of the ease of forming fibers with a wide range of properties and its exceptional advantages, such as the ability to spin into different shapes and sizes, as well as the adaptable porosity of electrospun fiber webs. The crimped structure has been attracting the attention of scientific researchers owing to its unique properties (eg, spring‐like behavior, supreme strain, remarkable specific surface area, good piezoelectric properties, excellent biological properties, and so on). Therefore, this study summarizes a review of the strategies and methods, reported so far, of generating electrospun crimped ultrathin fibers of various polymers. The review focuses on the polymer types, formation methods, characterizations, and applications of the electrospun crimped ultrathin fibers. We believe this work can serve as an important reference for the materials, strategies, and applications of crimped fibers.  相似文献   

19.
Electrospun type I collagen fibers are very promising materials for tissue scaffold applications, but are typically fabricated from toxic solvents. Recently, electrospinning of type I collagen fibers by using environmentally friendly phosphate buffer saline (PBS)/ethanol solution has been explored. PBS/ethanol solvent systems offer better cell compatibility, but the high surface tension and high boiling point of the solvent system make the collagen difficult to electrospin and can cause inferior fiber morphology. In this study, the influence of solvent surface tension on the morphology of electrospun collagen fibers has been experimentally investigated and analyzed from a thermodynamics perspective. The analytical results indicate that solvents with high surface tension drive the formation of beads along the smaller, thinner fibers. In addition, beads with relatively small angular eccentricity were thermodynamically favorable. The experimental results presented herein corroborate the theoretical analysis and conclusions drawn from this study. The surface tension of the solvent has significant influence on the bead formation, especially in an aqueous system. The environmental humidity for the electrospinning process and the collagen concentration were also investigated. These parameters may result in variations of the evaporation-solidification rates, which consequently impact the formation and morphologies of electrospun collagen fibers. According to the thermodynamic analysis, uniform electrospun collagen fibers without beads can be obtained by manipulating solvent surface tension during the electrospinning process.  相似文献   

20.
Novel fluorescent composite nanofibrous films of rhodamine 6G (Rh6G) and polyacrylonitrile (PAN) are first prepared by electrospinning. The aggregation states of Rh6G in electruspun nanofibrous films are studied as a function of concentrations and characterized by UV–vis absorption spectroscopy and emission and excitation fluorescence spectroscopy. We have also used casting films as reference material to compare the effect of incorporation of Rh6G in electrospun nanofibrous films and casting films. The large specific surface area of the nanofibers and fast evaporation of the solvents in the electrospinning process reduced the aggregation of Rh6G. The appearance of fluorescent J-type dimers, even at higher dye concentration in elctrospun films, demonstrates that the electrospun films are an ideal material for incorporation of fluorescent dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号