首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the process of preparing core–sheath fibers via coaxial electrospinning, the relative evaporation rates of core and sheath solvents play a key role in the formation of the core–sheath structure of the fiber. Both silk fibroin (SF) and poly(lactide‐co‐ε‐caprolactone) (PLCL) have good biocompatibility and biodegradability. SF has better cell affinity than PLCL, whereas PLCL has higher breaking strength and elongation than SF. In this work, hexafluoroisopropanol (HFIP)‐formic acid (volume ratio 8:2), HFIP and HFIP–dichloromethane (volume ratio 8:2) were used to dissolve PLCL as the core solutions, and HFIP was used to dissolve SF as the sheath solution. Then, core–sheath structured SF/PLCL (C‐SF/PLCL) fibers were prepared by coaxial electrospinning with the core and sheath solutions. Transmission electron microscopy images indicated the existence of the core–shell structure of the fibers, and energy dispersive X‐ray analysis results revealed that the fiber mat with the greatest content of core–shell structure fibers was obtained when the core solvent was HFIP–dichloromethane (volume ratio 8:2). Tensile tests showed that the C‐SF/PLCL fiber mat displayed improved tensile properties, with strength and elongation that were significantly higher than those of the pure SF mat. The C‐SF/PLCL fiber mat was further investigated as a scaffold for culturing EA.hy926 cells, and the results showed that the fiber mat permitted cellular adhesion, proliferation and spreading in a manner similar to that of the pure SF fiber mat. These results indicated that the coaxial electrospun SF/PLCL fiber mat could be considered a promising candidate for tissue engineering scaffolds for blood vessels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This study was aimed to design core–sheath‐structured polymeric fibers for protein delivery through emulsion electrospinning to enhance the encapsulation efficiency (EE), structural integrity, and activity retention, and to achieve controllable protein release. Integral core–sheath structure was achieved for electrospun fibers with lysozyme loading efficiency of 93.3% and the specific activity retention (SAR) of 64.6%, while the surface protein content (SP) was as low as 4.2%. The emulsion components were optimized to minimize the burst release and extend the release period, and the release profiles were found to be closely related with the fiber characteristics such as the SPs. An initial burst release as low as 6.2% followed by gradual release for 33 days was indicated from poly(ethylene glycol)‐poly(DL ‐lactide) (PELA) fibers. The gradual protein release was determined by a competition of fiber collapse leading to accelerated release and fiber fusion leading to decelerated release. Dependent on the matrix polymer and protein encapsulated, the degradation behaviors of the fiber matrices were correlated with the release rate and the effective lifetime of the drug release. The core–sheath‐structured ultrafine fibers could protect the structural integrity and bioactivity of encapsulated lysozyme, and an increase in the protective effect was demonstrated for fibers prepared from PELA matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Drug nanocarriers with magnetic targeting and pH‐responsive drug‐release behavior are promising for applications in controlled drug delivery. Magnetic iron oxides show excellent magnetism, but their application in drug delivery is limited by low drug‐loading capacity and poor control over drug release. Herein, core–shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate (MIO@ACP) were prepared and investigated as magnetic, pH‐responsive drug nanocarriers. Hollow microspheres of magnetic iron oxide (HMIOs) were prepared by etching solid MIO microspheres in hydrochloric acid/ethanol solution. After loading a drug into the HMIOs, the drug‐loaded HMIOs were coated with a protective layer of ACP by using adenosine 5′‐triphosphate (ATP) disodium salt (Na2ATP) as stabilizer, and drug‐loaded core–shell hollow microspheres of MIO@ACP (HMIOs/drug/ACP) were obtained. The as‐prepared HMIOs/drug/ACP drug‐delivery system exhibits superparamagnetism and pH‐responsive drug‐release behavior. In a medium with pH 7.4, drug release was slow, but it was significantly accelerated at pH 4.5 due to dissolution of the ACP shell. Docetaxel‐loaded core–shell hollow microspheres of MIO@ACP exhibited high anticancer activity.  相似文献   

4.
The effect of compaction conditions on UHMWPE fibers is examined by microbeam X‐ray diffraction (WAXS) and scanning electron microscopy (SEM). The morphological observations indicate that melting occurs during compaction both on the surface of the fiber as well as in its internal regions. In addition, the recrystallized phase is nucleated on the fiber surface, possibly epitaxially. The recrystallized phase that originates from the internal regions of the fiber retains the initial highly oriented structure. WAXS microbeam measurements do not show any significant core‐shell structure in compacted single fibers. Considering the overall characteristics of the melting process during compaction, we can conclude that the hexagonal phase that appears upon heating of the fibers under moderate pressure is responsible for good adhesion of the fibers to each other, even more significantly than surface melting, especially because of its ability to retain the high orientation of the chains in the fibers. This information is relevant for understanding the formation and microstructure of the matrix component in the self‐reinforced composites fabricated by compaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1535–1541, 2007  相似文献   

5.
Organic–inorganic hybrid core‐shell nanoparticles with diameters ranging from 100 to 1000 nm were prepared by a one‐pot synthesis based on base catalyzed sol–gel reactions using tetraethoxysilane and a triethoxysilane‐terminated polyethylene‐b‐poly(ethylene glycol) as reactants. Data from TEM, TGA, and solid‐state NMR analysis are in agreement with the formation of core‐shell nanoparticles with an inorganic‐rich core and an external shell consisting of an amphiphilic block copolymer monolayer. The influence of the organic–inorganic ratio, solution concentration, and postcuring temperature on core and shell dimensions of the nanospheres were investigated by TEM microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1699–1709, 2008  相似文献   

6.
Core–shell structured PEO‐chitosan nanofibers have been produced from electric field inducing phase separation. Chitosan, a positive charged polymer, was dissolved in 50 wt % aqueous acetic acid and the amino group on polycation would protonize, which would endow chitosan electrical properties. Chitosan molecules would move along the direction of the electric field under the electrostatic force and formed the shell layer of nanofibers. Preparation process of core – shell structure is quite simple and efficient without any post‐treatment. The core–shell structure and existence of chitosan on the shell layer were confirmed before and after post‐treatment by TEM and further supported by SEM, FTIR, XRD, DSC, and XPS studies. Blending ratio of PEO and chitosan, molecular weight of chitosan for the mobility of chitosan are thought to be the key influence factors on formation of core–shell structure. Drug release studies show that the prepared core–shell structure nanofibers has a potential application in the biomedical fields involving drug delivery. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2298–2311  相似文献   

7.
Chitosan nanoparticles were fabricated by a method of tripolyphosphate (TPP) cross‐linking. The influence of fabrication conditions on the physical properties and drug loading and release properties was investigated by transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV–vis spectroscopy. The nanoparticles could be prepared only within a zone of appropriate chitosan and TPP concentrations. The particle size and surface zeta potential can be manipulated by variation of the fabrication conditions such as chitosan/TPP ratio and concentration, solution pH and salt addition. TEM observation revealed a core–shell structure for the as‐prepared nanoparticles, but a filled structure for the ciprofloxacin (CH) loaded particles. Results show that the chitosan nanoparticles were rather stable and no cytotoxicity of the chitosan nanoparticles was found in an in vitro cell culture experiment. Loading and release of CH can be modulated by the environmental factors such as solution pH and medium quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
《先进技术聚合物》2018,29(6):1795-1803
Biodegradable wound dressing of poly glycerol sebacate/poly hydroxy butyrate was fabricated via the coaxial electrospinning process. Simvastatin and ciprofloxacin were loaded in the core and shell of the fibers, respectively. Scanning electron microscopy and transmission electron microscopy images showed a uniform core/shell structure. Introducing drugs into the polymers would cause the dressing samples to become more hydrophilic and degradation to occur faster. Drugs release would face no interventions, in which, approximately 60% of ciprofloxacin was released during the first 24 hours. Simvastatin exhibited a slower and controlled release behavior, with its release peak recorded after 2 days. The drug‐containing samples showed a proper bactericidal activity against both Gram‐positive and Gram‐negative bacteria. It may be concluded that the drug‐laden wound dressing fabricated in this study is capable of releasing the 2 drugs sequentially and that it is the ideal conditions for controlling infections and reducing wound healing duration.  相似文献   

9.
Amphiphilic tris(2,2′‐bipyridine)ruthenium‐cored star‐shaped polymers consisting of one polystyrene block and two poly(N‐isopropylacrylamide) blocks were prepared by the “arm‐first” method in which RAFT polymerization and nonconvalent ligand–metal complexation were employed. The prepared amphiphilic star‐shaped metallopolymers are able to form micelles in water. The size and distribution of the micelles were studied by dynamic light scattering and transmission electron microscopy techniques. Preliminary studies indicate that the polymer concentration and the hydrophilic poly(N‐isopropylacrylamide) block length can affect the morphologies of the formed metal‐interfaced core–shell micelles in water. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4204–4210, 2007  相似文献   

10.
Poly(methyl methacrylate)–poly(acrylonitrile‐co‐butadiene) (PMMA–NBR) core–shell structured nanoparticles were prepared using a two‐stage semibatch microemulsion polymerization system with PMMA and NBR as the core and shell, respectively. The Gemini surfactant 12‐3‐12 was used as the emulsifier and found to impose a pronounced influence on the formation of core–shell nanoparticles. The spherical morphology of core–shell nanoparticles was observed. It was found that there exists an optimal MMA addition amount, which can result in the minimized size of PMMA–NBR core–shell nanoparticles. The formation mechanism of the core–shell structure and the interaction between the core and shell domains was illustrated. The PMMA–NBR nanosize latex can be used as the substrate for the following direct latex hydrogenation catalyzed by Wilkinson's catalyst to prepare the PMMA–HNBR (hydrogenated NBR) core–shell nanoparticles. The hydrogenation rate is rapid. In the absence of any organic solvent, the PMMA–HNBR nanoparticles with a size of 30.6 nm were obtained within 3 h using 0.9 wt % Wilkinson's catalyst at 130 °C under 1000 psi of H2. This study provides a new perspective in the chemical modification of NBR and shows promise in the realization of a “green” process for the commercial hydrogenation of unsaturated elastomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
New random copolymers, poly(N‐vinyl‐2‐pyrrolidone‐co‐mono‐6‐deoxy‐6‐methacrylate ethylamino‐β‐cyclodextrin) (PnvpCD) bearing pendent β‐cyclodextrin (CD) groups were synthesized. PnvpCD formed soluble graft‐like polymer complex with adamantane (AD) end‐capped poly(ε‐caprolactone) (PclAD) in their common solvent N‐methyl‐2‐pyrrolidone driven by the inclusion interactions between the CD and AD groups. The formation of the graft complex has been confirmed by viscometry, dynamic light scattering (DLS), and isothermal titration calorimeter. The graft complex self‐assembled further into noncovalently connected micelles in water, which is a selective solvent for the main chain PnvpCD. Transmission electron microscopy, DLS, and atomic force microscopy have been used to investigate the structure and morphology of the resultant micelles. A unique “multicore” structure of the micelles, in which small PclAD domains scattered within the micelles, was obtained under nonequilibrium conditions in the preparation. However, the micelles prepared in a condition close to equilibrium possess an ordinary core‐shell structure. In both cases, the core and shell are believed to be connected by the AD‐CD inclusion complexation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4267–4278, 2009  相似文献   

12.
A core–shell fluorine‐containing polyacrylate emulsion was successfully prepared by UV‐initiated seeded emulsion polymerization in two stages in the presence of two photoinitiators. The water‐soluble photoinitiator for the core polymerization and the oil‐soluble photoinitiator was used for the shell polymerization. Both of the two stage polymerizations could be completed within 15 min and displayed a conversion above 94%. The emulsion and the films were characterized by Fourier transformed infrared spectrometry, transmission electron microscopy, dynamic light scattering, X‐ray photoelectron spectroscopy (XPS), contact angle (CA), and thermogravimetry analysis, respectively. The analysis results indicated that the fluorine‐containing latex particles had very small particle size (40 nm) with a core–shell structure and a narrow particle size distribution. XPS analysis revealed that a gradient concentration of fluorine excited in fluorine‐containing emulsion film from the film–air interface to the film–glass interface. In addition, the film formed from the fluorine‐containing emulsion exhibited not only higher thermal stability but also better hydrophobicity than that of the fluorine‐free emulsion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Thermosensitive polylactide‐block‐poly(N‐isopropylacrylamide) (t‐PLA‐b‐PNIPAAm) tri‐armed star block copolymers were synthesized by atom transfer radical polymerization (ATRP) of monomer NIPAAm using t‐PLA‐Cl as macroinitiator. The synthesis of t‐PLA‐Cl was accomplished by esterification of star polylactides (t‐PLA) with 2‐chloropropionyl chloride using trimethylolpropane as a center molecule. FT‐IR, 1H NMR, and GPC analyses confirmed that the t‐PLA‐b‐PNIPAAm star block copolymers had well‐defined structure and controlled molecular weights. The block copolymers could form core‐shell micelle nanoparticles due to their hydrophilic‐hydrophobic trait in aqueous media, and the critical micelle concentrations (CMC) were from 6.7 to 32.9 mg L?1, depending on the system composition. The as‐prepared micelle nanoparticles showed reversible phase changes in transmittance with temperature: transparent below low critical solution temperature (LCST) and opaque above the LCST. Transmission electron microscopy (TEM) observations revealed that the micelle nanoparticles were spherical in shape with core‐shell structure. The hydrodynamic diameters of the micelle nanoparticles depended on copolymer compositions, micelle concentrations and media. MTT assays were conducted to evaluate cytotoxicity of the camptothecin‐loaded copolymer micelles. Camptothecin drug release studies showed that the copolymer micelles exhibited thermo‐triggered targeting drug release behavior, and thus had potential application values in drug controlled delivery. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4429–4439  相似文献   

14.
SiO2–PNIPAAm core–shell microgels (PNIPAAm=poly(N‐isopropylacrylamide)) with various internal cross‐linking densities and different degrees of polymerization were prepared in order to investigate the effects of stability, packing, and temperature responsiveness at polar–apolar interfaces. The effects were investigated using interfacial tensiometry, and the particles were visualized by cryo‐scanning electron microscopy (SEM) and scanning force microscopy (SFM). The core–shell particles display different interfacial behaviors depending on the polymer shell thickness and degree of internal cross‐linking. A thicker polymer shell and reduced internal cross‐linking density are more favorable for the stabilization and packing of the particles at oil–water (o/w) interfaces. This was shown qualitatively by SFM of deposited, stabilized emulsion droplets and quantitatively by SFM of particles adsorbed onto a hydrophobic planar silicon dioxide surface, which acted as a model interface system. The temperature responsiveness, which also influences particle–interface interactions, was investigated by dynamic temperature protocols with varied heating rates. These measurements not only showed that the particles had an unusual but very regular and reversible interface stabilization behavior, but also made it possible to assess the nonlinear response of PNIPAAm microgels to external thermal stimuli.  相似文献   

15.
The synthesis, characterization, and potential application as gene delivery systems of biodegradable dual‐responsive core–shell nanogels based on poly(2‐diethylaminoethyl) methacrylate (PDEAEMA) and poly(N‐vinylcaprolactam) (PVCL) are reported. These core–shell nanogels, having a PDEAEMA‐based core and a PVCL‐based shell, were synthesized by batch seeded emulsion polymerization. An indepth study of their swelling behavior was carried out, which presented a dual‐dependent thermo‐ and pH sensitivity. Core–shell nanogels synthesized formed complexes spontaneously through electrostatic interactions when mixing with small interfering RNA (siRNA) molecules. Moreover, the core–shell nanogel/siRNA complexes showed higher polyanion exchange resistance compared to that of the PDEAEMA‐based nanogel/siRNA complexes, indicating that the PVCL‐based shell enhanced the stability of the complexes. In vitro siRNA release profiles showed that siRNA release was controlled by the pH of the medium as well as by the crosslinking density of the PVCL‐based shell. These results indicate that dual‐responsive core–shell nanogels synthesized could be potentially useful as gene delivery systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3203–3217  相似文献   

16.
Herein, we report the synthesis of aqueous CdTe/CdSe type‐II core–shell quantum dots (QDs) in which 3‐mercaptopropionic acid is used as the capping agent. The CdTe QDs and CdTe/CdSe core–shell QDs are characterized by X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR‐TEM), steady‐state absorption, and emission spectroscopy. A red shift in the steady‐state absorption and emission bands is observed with increasing CdSe shell thickness over CdTe QDs. The XRD pattern indicates that the peaks are shifted to higher angles after growth of the CdSe shell on the CdTe QDs. HR‐TEM images of both CdTe and CdTe/CdSe QDs indicate that the particles are spherical, with a good shape homogeneity, and that the particle size increases by about 2 nm after shell formation. In the time‐resolved emission studies, we observe that the average emission lifetime (τav) increases to 23.5 ns for CdTe/CdSe (for the thickest shell) as compared to CdTe QDs (τav=12 ns). The twofold increment in the average emission lifetime indicates an efficient charge separation in type‐II CdTe/CdSe core–shell QDs. Transient absorption studies suggest that both the carrier cooling and the charge‐transfer dynamics are affected by the presence of traps in the CdTe QDs and CdTe/CdSe core–shell QDs. Carrier quenching experiments indicate that hole traps strongly affect the carrier cooling dynamics in CdTe/CdSe core–shell QDs.  相似文献   

17.
An emulsifier‐free core–shell polyacrylate emulsion, containing nano‐SiO2 nanoparticles in the core and diacetone acrylamide (DAAM) in the shell, has been successfully prepared by emulsifier‐free seeded emulsion polymerization. The effects of reaction temperature, dropping time, nano‐SiO2 and initiator contents, and variation of the composition of core monomers on the amount of coagulum, particle size, and monomer conversion have been investigated. The particle morphology and the distribution of emulsion particles have been measured by transmission electron microscopy (TEM) and dynamic light scattering. The keto‐carbonyl groups on the surface of the polyacrylate emulsion nanoparticles reacted with adipic dihydrazide (ADH) to form a film with a cross‐linked network structure at room temperature. Therefore, the emulsifier‐free core–shell emulsion could be used as a two‐component room temperature curable waterborne coating. It was also found that the properties of the coating were clearly superior after using the cross‐linker. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Monomethoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone)(MPEG‐b‐PCL) diblock copolymers were synthesized via a ring‐opening polymerization. The polymeric nanoparticles prepared by precipitation/solvent evaporation exhibit a core–shell structure, characterized by dynamic light scattering (DLS), nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). The hydrolytic degradation of those nanoparticles was studied by DLS, NMR, and gel permeation chromatography (GPC). It was found that the molecular weight of PCL block in a copolymer significantly affects the stability of nanoparticles in aqueous solution and nanoparticles with shorter PCL block length degraded faster. The degradation behaviors could be divided into two stages with slow degradation at the interface region via swelling effect and fast degradation at inner core via caves and channels formed by cleavage of ester bonds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Electrically conductive polyaniline (PANi)/poly(methyl methacrylate) (PMMA) coaxial fibers were prepared through the chemical deposition of PANi onto preformed PMMA fibers via in situ polymerization. PMMA fibers were prepared as core materials via electrospinning. Spectral studies and scanning electron microscopy observations indicated the formation of PANi/PMMA coaxial fibers with a diameter of approximately 290 nm and a PANi layer thickness of approximately 30 nm. The conductivity of the PANi/PMMA coaxial fibers was significantly higher than that of electrospun fibers of PANi/poly(ethylene oxide) blends and blend cast films of the same PANi composition. To reproducibly generate uniform‐core polymer fibers, the organic solution properties that affected the morphology and diameter of the electrospun fibers were investigated. The polymer molecular weight, solution concentration, solvent dielectric constant, and addition of soluble organic salts were strongly correlated to the morphology of the electrospun fiber mat. In particular, the dielectric constants of the solvents substantially influenced both the fiber diameter and bead formation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3934–3942, 2004  相似文献   

20.
A method was developed to enable the formation of nanoparticles by reversible addition–fragmentation chain transfer polymerization. The thermoresponsive behavior of polymeric micelles was modified by means of micellar inner cores and an outer shell. Polymeric micelles comprising AB block copolymers of poly(N‐isopropylacrylamide) (PIPAAm) and poly(2‐hydroxyethylacrylate) (PHEA) or polystyrene (PSt) were prepared. PIPAAm‐b‐PHEA and PIPAAm‐b‐PSt block copolymers formed a core–shell micellar structure after the dialysis of the block copolymer solutions in organic solvents against water at 20 °C. Upon heating above the lower critical solution temperature (LCST), PIPAAm‐b‐PHEA micelles exhibited an abrupt increase in polarity and an abrupt decrease in rigidity sensed by pyrene. In contrast, PIPAAm‐b‐PSt micelles maintained constant values with lower polarity and higher rigidity than those of PIPAAm‐b‐PHEA micelles over the temperature range of 20–40 °C. Structural deformations produced by the change in the outer polymer shell with temperature cycles through the LCST were proposed for the PHEA core, which possessed a lower glass‐transition temperature (ca. 20 °C) than the LCST of the PIPAAm outer shell (ca. 32.5 °C), whereas the PSt core with a much higher glass‐transition temperature (ca. 100 °C) retained its structure. The nature of the hydrophobic segments composing the micelle inner core offered an important control point for thermoresponsive drug release and the drug activity of the thermoresponsive polymeric micelles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3312–3320, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号