共查询到20条相似文献,搜索用时 15 毫秒
1.
Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide 总被引:3,自引:0,他引:3
Hongfang ZhuQiliang Zhu Juan Li Kang TaoLixin Xue Qing Yan 《Polymer Degradation and Stability》2011,96(2):183-189
Synergistic effect was observed between expandable graphite (EG) and ammonium polyphosphate (APP) on flame retarded polylactide (PLA) in this paper using limiting oxygen index (LOI), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and X-ray spectroscopy (XPS) and cone calorimeter tests etc. In the experiments, PLA composites with 15 wt% of APP/EG(1:3) combinations showed a LOI value of 36.5 and V-0 rating in UL-94 tests, greatly improved flame retardant properties from composites with APP or EG alone. Results from TGA and cone calorimeter demonstrated that APP/EG combination could retard the degradation of polymeric materials above the temperature of 520 °C by promoting the formation of a compact char layer. This char layer protects the matrix effectively from heat penetrating inside and prevents its further degradation, resulting in lower weight loss rate and better flame retarded performance. 相似文献
2.
Zhiquan Chen Mengwei Jiang Yuan Yu Guangping Sun Juncheng Jiang 《International Journal of Polymer Analysis and Characterization》2017,22(6):509-518
A series of flame-retardant unsaturated polyester resin (UPR) were prepared by the addition of dimethyl methylphosphonate (DMMP) with various amounts of aluminum hydroxide (ATH) or ammonium polyphosphate (APP) as the flame retardants. The combustion resistance effects of ATH/DMMP and APP/DMMP systems were evaluated by limiting oxygen index test and vertical burning test (UL-94). The thermal properties of UPR were investigated by thermogravimetric analysis. The structure of char was observed by scanning electron microscopy. DMMP incorporated with ATH or APP improved the flame retardancy and thermal properties of UPR. However, the fire-retardant mechanism of these two systems were different: The ATH/DMMP system provided synergistic effect in charring property of the UPR, produced great amount of residual char, and thus revealed the excellent flame retardancy. The APP/DMMP system further improved the flame retardancy of the UPR due to the change in the residual char structure rather than the increase in the production of char. 相似文献
3.
Thermal stability and flammability properties of heterophasic PP-EP/EVA/organoclay nanocomposites 总被引:1,自引:0,他引:1
M. Valera-Zaragoza F.J. Medellín-Rodríguez B.M. Huerta-Martínez 《Polymer Degradation and Stability》2006,91(6):1319-1325
A study on the thermal behavior and flammability properties of the heterophasic polypropylene-(ethylene-propylene) copolymer (PP-EP)/poly(ethylene vinyl acetate) (EVA)/montmorillonite nanocomposite is presented. Nanoclay nanocomposites were prepared using a twin screw extruder. Both the fluidity of the EVA phase and compatibility conditions between PP-EP and EVA were used in order to obtain the required nanocomposites. Therefore, no additional compatibilizer was required to achieve the clay dispersion. Products exhibited the partially exfoliated/intercalated nanoclay dispersion. Thermogravimetric analyses indicated that nanoclays retard thermal degradation depending on nanoclay concentration. The retarding process was assigned to the exfoliation and dispersion of the silicate layers which impeded heat diffusion to the macromolecules. Thermal studies, under non-isothermal crystallization, indicated the lack of influence of nanoclay on the thermal behavior. Flammability characteristics were however affected by the nanoclay layers which overall generated flame retardation both in the EVA host and in the complex nanocomposites. 相似文献
4.
M. M. Abolhasani A. Arefazar M. Mozdianfard 《Journal of Polymer Science.Polymer Physics》2010,48(3):251-259
Immiscible ternary blends of PET/EVA/PP (PET as the matrix and (PP/EVA) composition ratio = 1/1) were prepared by melt mixing. Scanning electron microscope results showed core‐shell type morphology for this ternary blend. Binary blends of PET/PP and PET/EVA were also prepared as control samples. Two grades of EVA with various viscosities, one higher and the other one lower than that of PP, were used to investigate the effect of components' viscosity on the droplet size of disperse phase. The effect of interfacial tension, elasticity, and viscosity on the disperse phase size of both binary and ternary blends was investigated. Variation of tensile modulus of both binary and ternary blends with dispersed phase content was also studied. Experimental results obtained for modulus of PET/EVA binary blends, showed no significant deviations from Takayanagi model, where considerable deviations were observed for PET/PP binary blends. Here, this model that has been originally proposed for binary blends was improved to become applicable for the prediction of the tensile modulus of ternary blends. The new modified model showed good agreement with the experimental data obtained in this study. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 251–259, 2010 相似文献
5.
Didier Colombini Helen Hassander Ola J. Karlsson Frans H. J. Maurer 《Journal of Polymer Science.Polymer Physics》2005,43(17):2289-2306
The effects of thermal annealing on the viscoelastic properties and morphology of films prepared from bimodal latex blends containing equal weight fractions of soft and hard latex particles with controlled sizes were investigated. The thermal and viscoelastic properties of as‐dried and annealed samples were investigated with differential scanning calorimetry and dynamic mechanical analysis (DMA). Throughout the thermal annealing, the latex blend morphologies were also followed with atomic force microscopy and transmission electron microscopy (TEM). A particulate morphology, consisting of hard particles evenly dispersed in a continuous soft phase, was observed in the TEM micrographs of the as‐dried latex blends and resulted in an enhancement of the mechanical film properties at temperatures between the α relaxations of the soft and hard phases in the DMA thermograms. As soon as the thermal annealing involved temperatures higher than the glass‐transition temperature of the hard phase, the hard particles progressively lost their initial spherical shape and formed a more or less continuous phase in the latex blends. This induced coalescence of the hard particles was confirmed by the association of the experimental viscoelastic data with theoretical predictions, based on self‐consistent mechanical models, which were performed by the consideration of either a particulate or cocontinuous morphology for the bimodal latex blends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2289–2306, 2005 相似文献
6.
7.
The synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate (MAPP) on the thermal and flame retardancy of polypropylene (PP) are investigated by limiting oxygen index (LOI), UL‐94 test, cone calorimetry, thermogravimetric analysis (TGA), scanning electron micrograph (SEM), and water resistance test. The results of cone calorimetry show that heat release rate peak (PHRR), total heat release (THR), and the mass loss of PP with 30 wt% intumescent flame retardant (IFR, CFA/MAPP = 1:2) decreases remarkably compared with that of pure PP. The HRR, THR, and mass loss decrease, respectively from 1140 to 100 kW/m2, from 96 to 16.8 MJ/m2, and from 100 to 40%. The PP composite with CFA/MAPP = 1:2 has the best water resistance, and it can still obtain a UL‐94 V‐0 rating after 168 hr soaking in water. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
8.
Jun Sun Xiaoyu Gu Mathieu Coquelle Serge Bourbigot Sophie Duquesne Mathilde Casetta Sheng Zhang 《先进技术聚合物》2014,25(12):1552-1559
Melamine polyphosphate (MPP) and halloysite nanotubes (HNT) were introduced to polyamide 6 (PA6) by melt blending in order to improve the fire resistance. PA6 composite containing 12% flame retardants with good spinnability was obtained. The flammability of PA6 composite was characterized by limiting oxygen index (LOI), UL‐94 vertical burning and cone calorimeter (CONE) tests. The results indicated that the LOI value could reach 24.0 vol.% and UL‐94 rating could achieve V2 level at the presence of 12% flame retardants. CONE data demonstrated that peak heat release rate was significantly reduced from 554 kW/m2 of neat PA6 to 368 kW/m2 of the sample containing flame retardants. Thermal analysis indicated that the thermal stability and char formation were improved by the presence of flame retardants. The morphology of residue char was characterized by scanning electron microscopy; and it suggested that a network‐structured protective char layer had been formed. The possible synergism between MPP/HNT and their flame retardant mechanism was also analyzed and discussed. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
9.
Polypropylene/layered double hydroxide nanocomposites: Synergistic effect of designed filler modification and compatibilizing agent on the morphology,thermal, and mechanical properties 下载免费PDF全文
Romina Charifou Fabrice Gouanvé Rene Fulchiron Eliane Espuche 《Journal of Polymer Science.Polymer Physics》2015,53(11):782-794
This work addresses the optimization of the morphology, thermal, and mechanical properties of polypropylene/layered double hydroxide (LDH) nanocomposites. For this, the nanofillers were modified by a calcination rehydration process using two surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate, respectively. The nanofillers were characterized at each step of the modification process by thermal gravimetry, X‐ray diffraction, and Infra red spectroscopy. Furthermore, the impact of anionic modifiers on the filler surface energy and on the interactions toward water was analyzed. Polypropylene (PP)/LDH nanocomposites were then prepared by a melt intercalation process and a high molar mass maleic anhydride functionalized polypropylene (PPgMA) was introduced as a compatibilizer. The dispersion of LDH in the PP matrix was characterized and the thermal and mechanical properties of the corresponding nanocomposites were determined and discussed as a function of the filler modification, of the nanocomposite morphology, and of the filler/matrix interfacial properties. The nanocomposites prepared from SDS modified LDH and PPgMA exhibited superior properties thanks to an optimized filler dispersion state and improved interfacial interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 782–794 相似文献
10.
Guo Boyuan Zhang TianQi Zhang Wanxi Dou Yanli 《Journal of Thermal Analysis and Calorimetry》2019,138(4):2367-2374
Journal of Thermal Analysis and Calorimetry - The hybrid blends consisting of ethylene–propylene–diene monomer (EPDM) and vinyl polyhedral silsesquioxane (vinyl-POSS) nanoparticles were... 相似文献
11.
Jingxing Feng Guojun Zhang Kari MacInnis Zhenpeng Li Andrew Olah Eric Baer 《Journal of Polymer Science.Polymer Physics》2019,57(5):281-290
The compatibilization effect of linear low‐density polyethylene‐grafted maleic anhydride (LLDPEgMA) and high‐density polyethylene‐grafted maleic anhydride (HDPEgMA) on high‐density polyethylene (HDPE)/polyamide 6 (Nylon 6) blend system is investigated. The morphology of 45 wt %/55 wt % polyethylene/Nylon 6 blends with three compatibilizer compositions (5 wt %, 10 wt %, and 15 wt %) are characterized by atomic force microscopic (AFM) phase imaging. The blend with 5 wt % LLDPEgMA demonstrates a Nylon 6 continuous, HDPE dispersed morphology. Increased amount of LLDPEgMA leads to sharp transition in morphology to HDPE continuous, Nylon 6 dispersed morphology. Whereas, increasing HDPEgMA concentration in the same blends results in gradual morphology transition from Nylon 6 continuous to co‐continuous morphology. The mechanical properties, oxygen permeability, and water vapor permeability are measured on the blends which confirm the morphology and indicate that HDPEgMA is a better compatibilizer than LLDPEgMA for the HDPE/Nylon 6 blend system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 281–290 相似文献
12.
The synergistic effects of 4A zeolite (4A) on the thermal degradation, flame retardancy and char formation of a novel halogen‐free intumescent flame retardant polypropylene composites (PP/IFR) were investigated by the means of limiting oxygen index (LOI), vertical burning test (UL‐94), digital photos, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), cone calorimeter test (CCT), laser Raman spectroscopy (LRS) and X‐ray photoelectron spectroscopy (XPS). It was found that a small amount of 4A could dramatically enhance the LOI value of the PP/IFR systems and the materials could pass the UL‐94 V‐0 rating test. Also, it could enhance the fire retardant performance with a great reduction in combustion parameters of PP/IFR system from CCT test. The morphological structures observed by digital and SEM photos revealed that 4A could promote PP/IFR to form more continuous and compact intumescent char layer. The LRS measurement, XPS and TGA analysis demonstrated that the compactness and strength of the outer char surface of the PP/IFR/4A system was enhanced, and more graphite structure was formed to remain more char residue and increase the crosslinking degree. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
13.
Hui Liu Zhengping Fang Mao Peng Lie Shen Yongchang Wang 《Radiation Physics and Chemistry》2009,78(11):922-926
High-density polyethylene/ethylene vinyl-acetate copolymer/magnesium hydroxide composites were crosslinked via high-energy electron beam irradiation in the presence of triallylisocyanurate. The structure of the cross-linking network was determined with the help of rheological measurements through advanced rheological extended systems (ARES). The thermal and flame-retardant properties of the irradiated composites were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and cone calorimetry. Results showed that the cross-linking network structure could enhance the thermal stability of composites, and did favor to smoke suppression. However, the peak heat release rate (PHRR) increased and the time to PHRR shortened, inferring that the composites after irradiation cross-linking were easier to combust. The char microstructure after cone calorimetry test was observed and used to give explanation of the above results. 相似文献
14.
P. Rybiński G. Janowska W. Antkowicz S. Krauze 《Journal of Thermal Analysis and Calorimetry》2005,81(1):9-13
Summary The paper discusses the results of thermal analysis and flammability of butadiene-acrylonitrile rubber, Perbunan NT 1845 of Bayer, cross-linked with iodoform. The properties of the iodoform vulcanizate have been compared with those of peroxide vulcanizate. The thermal analysis has been performed in air with use of a derivatograph under air and nitrogen atmosphere as well as dynamic scanning calorimetry (DSC). The flammability of vulcanizates has been determined by the method of oxygen index and in air. The toxicity of the thermal decomposition and combustion products of the vulcanizates under investigation has been also determined. Based on complementary examinations, DTA and DSC curves have been interpreted from the point of view of thermal transitions of the conventionally and non-conventionally cross-linked nitrile rubbers. The glass transition temperature of the cross-linked polymer both in cooling and heating has been determined. 相似文献
15.
Shih-Kai Cheng 《European Polymer Journal》2004,40(6):1239-1248
Transparent EVA/PMMA sheets are produced via in situ polymerization of MMA in this work. In the presence of the EVA-graft-PMMA (EVA-g-PMMA), which is synthesized by using tert-butyl peroctoate (t-BO) as initiator during MMA polymerization, EVA can be well dispersed in the PMMA matrix. Both tensile fracture energy and Izod impact strength of the EVA/PMMA blends are higher than those of the neat PMMA. SEM photos show that the grafted copolymer also prevents the dispersed EVA particles from being pulled out from the fracture surface. While the EVA/PMMA blends are investigated at room temperature over the strain rates of four decades (from 1.6 × 10−4 to 0.16 s−1). It has an obvious transition, whereas the neat PMMA remains brittle over the entire range of strain rates. 相似文献
16.
Chen-Feng Kuan Chia-Hsun Chen Hsu-Chiang Kuan 《Polymer Degradation and Stability》2008,93(7):1357-1363
In this work, silane was grafted on expandable graphite via a free-radical reaction. The modified expandable graphite has an -OEt functional group which reacts with TEOS and PMMA that was modified via a sol-gel reaction using a coupling agent that contains silicon. Synergism between silicon flame retardant and expandable graphite increased the flame retardance of the materials. Expandable graphite was functionalized using a coupling agent to increase the interactive force between the organic and inorganic phases. It enhanced the thermal stability of the composites. SEM was adopted to observe the morphology of the composites, and the behavior associated with expansion after the materials had been burned is elucidated. LOI, TGA and IPDT were employed to calculate the flame retardance and thermal stability. The results indicate that the composites are halogen-free flame retardant organic/inorganic composites. Two methods for elucidating the kinetics of thermal degradation were utilized to measure the activation energy when the composites degraded in the high-temperature atmosphere. 相似文献
17.
Yang Xu Man Chen Xin Ning Xiaolang Chen Zhidan Sun Yonghong Ma Jie Yu Zhibin Zhang Xiaojin Bo Le Yang Zining Chen 《Journal of Thermal Analysis and Calorimetry》2014,115(1):689-695
In this study, polypropylene (PP)/thermoplastic polyurethanes (TPU) filled with inorganic intumescent flame retardant expanded graphite (EG) was prepared by melt blending in a twin-screw extruder. The thermal stability, fire retardancy, mechanical properties, and fracture morphology of PP/TPU composites with treated and untreated EG were investigated by thermogravimetric analysis, cone calorimeter, and scanning electron microscope. The results showed that both untreated and treated EG can greatly enhance the thermal stability and fire resistance of polymer matrix materials. Compared with untreated EG, treated EG can further improve the flame retardancy of the composites. For example, treated EG can further reduce the heat release rate, total heat release, and CO emissions of the composites in the combustion. Surface treatment of EG could significantly improve elongation at break and impact strength of PP/TPU/EG composites due to its enhanced interfacial adhesion and the good dispersion of EG particles in the polymer matrix. 相似文献
18.
In order to prepare tough polyurethane (PU) electrical insulator with improved thermal stability and electrical insulating properties, high molecular weight polybenzoxazine precursor was mixed and co‐cured with crosslinkable urethane prepolymers. Polybenzoxazine precursor (Bmda) was synthesized from reaction of bisphenol‐A, methylenedianiline, and paraformaldehyde. Epoxy‐terminated polyurethanes (EPU1‐4) were prepared by the reaction of glycidol with NCO‐terminated urethane oligomers. The oligomers were prepared from different molecular weight versions of polycaprolactone polyol (CAPA) and hexamethylene diisocyanate. Blends were prepared through thermal treatment of equal weights of two precursors dissolved in chloroform. Optimum curing condition was determined by DSC and DMTA analysis and measurement of the gel content for cured samples. Viscoelastic, thermal, mechanical, and electrical properties of cured samples were investigated and structure–property relationship was established. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
19.
The effects of the addition of diblock copolymer poly(styrene‐b‐ethylene‐co‐propylene) (SEP) to isotactic polypropylene (iPP) on the morphology and mechanical properties were investigated. Phase morphologies of iPP/SEP blends up to a 70/30 weight ratio, prepared in Brabender Plasticoder, were studied with optical microscopy, scanning electron microscopy, transmission electron microscopy, and wide‐angle X‐ray diffraction. The addition of 2.5 wt % SEP caused a nucleation effect (by decreasing the crystallite and spherulite size) and randomization of the crystallites. With further SEP addition, the crystallite and spherulite size increased because of prolonged solidification and crystallization and achieved the maximum in the 80/20 iPP/SEP blend. This maximum was a result of the appearance of β spherulites and the presence of mixed α spherulites in the 80/20 iPP/SEP blend. Dispersed SEP particles were irregular and elongated clusters consisting of oval and spherical core–shell microdomains or SEP micelles. SEP clusters accommodated their shapes to interlamellar and interspherulitic regions, which enabled a well‐developed spherulitization even in the 70/30 iPP/SEP blend. The addition of SEP decreased the yield stress, elongation at yield, and Young's modulus but significantly improved the notched impact strength with respect to the strength of pure iPP at room temperature. Some theoretical models for the determination of Young's modulus of iPP/SEP blends were applied for a comparison with the experimental results. The experimental line was closest to the Takayanagi series model. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 566–580, 2001 相似文献
20.
Kang Dai Lei Song Saihua Jiang Bin Yu Wei Yang Richard K.K. Yuen Yuan Hu 《Polymer Degradation and Stability》2013
A novel reactive phosphorus-containing monomer [1-oxo-2,6,7-trioxa-1- phosphabicyclo-[2.2.2]octane-methyl diallyl phosphate, PDAP] was synthesized, and various amounts of PDAP were combined with unsaturated polyester by radical bulk polymerization. The resulting flame-retardant unsaturated polyester resin (FR-UPR) samples were investigated by thermogravimetric analysis (TGA), microscale combustion calorimetry (MCC), and limiting oxygen index (LOI) tests. Due to the relatively high phosphorus content of PDAP (18.2 wt%), incorporation of this monomer into unsaturated polyester resin (UPR) led to a marked decrease in the heat release capacity (HRC), the total heat release (THR), an increase in the LOI and the char yield upon combustion. In order to elaborate the interactions between the UPR and PDAP in degradation, differences between the experimental and theoretical mass losses of a FR-UPR sample were evaluated. Furthermore, thermogravimetry-Fourier transform infrared (TG-FTIR) and real-time Fourier transform infrared (RTIR) spectroscopy were employed to investigate the degradation behavior of UPRs, providing insight into the degradation mechanism. 相似文献