首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A new phosphorus‐containing aromatic diamine, 1,4‐bis(4‐aminophenoxy)‐2‐(6‐oxido‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl) phenylene ( 3 ) was synthesized by the nucleophilic aromatic substitution of 2‐(6‐oxido‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl)‐1,4‐dihydroxy phenylene ( 1 ) with 4‐fluoronitrobenzene, followed by catalytic hydrogenation. Light color, flexible, and creasable polyimides with high molecular weight, high glass transition, high thermal stability, improved organosolubility, and good oxygen plasma resistance were synthesized from the condensation of ( 3 ) with various aromatic dianhydrides in N,N‐dimethylacetamide, followed by thermal imidization. The number‐average molecular weights of polyimides are in the range of 7.0–8.3 × 104 g/mol, and the weight‐average molecular weights are in the range of 12.5–16.5 × 104 g/mol. The Tgs of these polyimides range from 230 to 304 °C by differential scanning calorimetry and from 228 to 305 °C by DMA. These polyimides are tough and flexible, with tensile strength at around 100 MPa. The degradation temperatures (Td 5%) and char yields at 800 °C in nitrogen range from 544 to 597 °C and 59–65 wt %, respectively. Polyimides 5c and 5e , derived from OPDA and 6FDA, respectively, with the cutoff wavelength of 347 and 342 μm, respectively, show very light color. These polyimides also exhibit good oxygen plasma resistance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2897–2912, 2007  相似文献   

2.
A series of thermally stable aromatic polyimides containing triphenylamine‐substituted triazole moieties ( AZTA‐PI )s were prepared and characterized. The glass transition temperatures (Tg) of the polyimides were found to be in the range of 262–314 °C. The polyimides obtained by chemical imidization had inherent viscosities of 0.25–0.44 dL g?1 in N‐methyl‐2‐pyrrolidinone. The number average molecular weights (Mn) and weight average molecular weights (Mw) were 1.9–3.2 × 104 and 3.2–5.6 × 104, respectively, and the polydispersity indices (PDI = Mw/Mn) were in the range of 1.70–1.78. A resistive switching device was constructed from the 4,4′‐hexafluoroisopropylidenediphthalic dianhydride‐based soluble polyimide ( AZTA‐PIa ) in a sandwich structure of indium‐tin oxide/polymer/Al. The as‐fabricated device can be switched from the initial low‐conductivity (OFF) state to the high‐conductivity (ON) state at a switching threshold voltage of 2.5 V under either positive or negative electrical sweep, with an ON/OFF state current ratio in the order of 105 at ?1 V. The device is able to remain in the ON state even after turning off the power or under a reverse bias. The nonvolatile and nonrewritable natures of the ON state indicate that the device is a write‐once read‐many times (WORM) memory. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
A series of novel sulfonated polyimides (equivalent weight per sulfonic acid = 310–744 g/equiv) containing 10–70 mol % 1,5‐naphthylene moieties were synthesized as potential electrolyte materials for high‐temperature polymer electrolyte fuel cells. The polycondensation of 1,4,5,8‐naphthalene tetracarboxylic dianhydride, 4,4′‐diamino‐2,2′‐biphenyldisulfonic acid, and 1,5‐diaminonaphthalene gave the title polymer electrolytes. The polyimide electrolytes were high‐molecular‐weight (number‐average molecular weight = 36.0–350.7 × 103 and weight‐average molecular weight = 70.4–598.5 × 103) and formed flexible and tough films. The thermal properties (decomposition temperature > 260 °C, no glass‐transition temperature), stability to oxidation, and water absorption were analyzed and compared with those of perfluorosulfonic acid polymers. The polyimide containing 20 mol % 1,5‐naphthylene moieties showed higher proton conductivity (0.3 S cm?1) at 120 °C and 100% relative humidity than perfluorosulfonic acid polymers. The temperature and humidity dependence of the proton conductivity was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3901–3907, 2003  相似文献   

4.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

5.
2,2‐Bis[4(4‐aminophenoxy)phenyl]phthalein‐3′,5′‐bis(trifluoromethyl)anilide (6FADAP), containing fluorine and phthalimide moieties, was synthesized via the Williamson ether condensation reaction from 1‐chloro‐4‐nitrobenzene and phenolphthalein‐3′,5′‐bis(trifluoromethyl)anilide, which was followed by hydrogenation. Monomers such as 2,2‐bis[4(4‐aminophenoxy)phenyl]phthalein‐anilide containing phthalimide groups and 2,2‐bis[4(4‐aminophenoxy)phenyl]phthalein containing only phthalein moieties were also synthesized for comparison. The monomers were first characterized by Fourier transform infrared (FTIR), 1H NMR, 19F NMR, elemental analysis, and titration and were then used to prepare polyimides with 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride. The polyimides were designed to have molecular weights of 20,000 g/mol via off‐stoichiometry and were characterized by FTIR, NMR, gel permeation chromatography (GPC), differential scanning calorimetry, and thermogravimetric analysis. Their solubility, water absorption, dielectric constant, and refractive index were also evaluated. The polyimides prepared with 6FADAP, containing fluorine and phthalimide moieties, had excellent solubility in N‐methylpyrrolidinone, N,N‐dimethylacetamide, tetrahydrofuran, CHCl3, tetrachloroethane, and acetone, and GPC analysis showed a molecular weight of 18,700 g/mol. The polyimides also exhibited a high glass‐transition temperature (290 °C), good thermal stability (~500 °C in air), low water absorption (1.9 wt %), a low dielectric constant (2.81), a low refractive index, and low birefringence (0.0041). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3361–3374, 2003  相似文献   

6.
A new aromatic, unsymmetrical ether diamine with a trifluoromethyl pendent group, 1,4‐(2′‐trifluoromethyl‐4′,4″‐diaminodiphenoxy)benzene, was successfully synthesized in three steps with hydroquinone as a starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, 2,2′‐bis(3,4‐dicarboxyphenyl)‐hexafluoropropane dianhydride, and pyromellitic dianhydride, via a conventional two‐step thermal or chemical imidization method to produce a series of fluorinated polyimides. The polyimides were characterized with solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X‐ray diffraction studies, and thermogravimetric analysis. The polyimides had inherent viscosities of 0.56–0.77 dL/g and were easily dissolved in both polar, aprotic solvents and common, low‐boiling‐point solvents. The resulting strong and flexible polyimide films exhibited excellent thermal stability, with decomposition temperatures (at 5% weight loss) above 522 °C and glass‐transition temperatures in the range of 232–272 °C. Moreover, the polymer films showed outstanding mechanical properties, with tensile strengths of 74.5–121.7 MPa, elongations at break of 6–13%, and initial moduli of 1.46–1.95 GPa, and good dielectric properties, with low dielectric constants of 1.82–2.53 at 10 MHz. Wide‐angle X‐ray diffraction measurements revealed that these polyimides were predominantly amorphous. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced microelectronic applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6836–6846, 2006  相似文献   

7.
To prepare novel polyimides with enhanced thermal stability and high solubility in common organic solvents, diamine monomers, 4‐aryl‐2,6 bis‐(4‐amino phenyl)pyridine, were introduced. The diamines were reacted with three different conventional aromatic dianhydrides including pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, and hexafluoroisopropylidene‐2,2‐bis(phthalic‐dianhydride) (6FDA) in dimethylacetamide solvent to obtain the corresponding polyimides via the polyamic acid precursors and chemical imidization. The monomers and polymers were characterized by Fourier transform infrared spectroscopy, 1H NMR, mass spectroscopy, and elemental analysis; and the best condition of polymerization and imidization were obtained via the study of model compound. The polyimides showed little or no weight loss by thermogravimetric analysis up to 500 °C, and those derived from 6FDA exhibited good solubility in various polar solvents. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3826–3831, 2001  相似文献   

8.
A novel diamine, bis‐(3‐aminophenyl)‐4‐(trifluoromethyl)phenyl phosphine oxide (mDA3FPPO), containing phosphine oxide and fluorine moieties was prepared via the Grignard reaction from an intermediate, 4‐(trifluoromethyl)phenyl diphenyl phosphine oxide, that was synthesized from diphenylphosphinic chloride and 4‐(trifluoromethyl)bromobenzene, followed by nitration and reduction. The monomer was characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR, 19F NMR spectroscopies; elemental analysis; melting point measurements; and titration and was used to prepare polyimides with a number of dianhydrides such as pyromellitic dianhydride (PMDA), 5,5′‐[2,2,2‐trifluoro‐1‐(trifluoromethyl)ethyliden]‐bis‐1,3‐isobenzofuranedione (6FDA), 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), and 4,4′‐oxydiphthalic dianhydride (ODPA). Polyimides were synthesized via a conventional two‐step route; preparation of polyamic acids, followed by solution imidization, and the molecular weight were controlled to 20,000 g/mol. Resulting polyimides were characterized by FTIR, NMR, DSC, and intrinsic viscosity measurements. Refractive‐index, dielectric constant, and adhesive properties were also determined. The properties of polyimides were compared with those of polyimides prepared from 1,1‐bis‐(4‐aminophenyl)‐1‐phenyl‐2,2,2‐trifluoroethane (3FDAm) and bis‐(3‐aminophenyl) phenyl phosphine oxide (mDAPPO). The polyimides prepared from mDA3FPPO provided high glass‐transition temperatures (248–311 °C), good thermal stability, excellent solubility, low birefringence (0.0030–0.0036), low dielectric constants (2.9–3.1), and excellent adhesive properties with Cu foils (107 g/mm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3335–3347, 2001  相似文献   

9.
A novel aromatic diamine monomer, 3,3′‐diisopropyl‐4,4′‐diaminodiphenyl‐3′′,4′′‐difluorophenylmethane (PAFM), was successfully synthesized by coupling of 2‐isopropylaniline and 3,4‐difluorobenzaldehyde. The aromatic diamine was adopted to synthesize a series of fluorinated polyimides by polycondensation with various dianhydrides: pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA) and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) via the conventional one‐step method. These polyimides presented excellent solubility in common organic solvents, such as N,N‐dimethylformamide (DMF), N,N‐dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), N‐methyl‐2‐pyrrolidone (NMP), chloroform (CHCl3), tetrahydrofuran (THF) and so on. The glass transition temperatures (Tg) of fluorinated polyimides were in the range of 260–306°C and the temperature at 10% weight loss in the range of 474–502°C. Their films showed the cut‐off wavelengths of 330–361 nm and higher than 80% transparency in a wavelength range of 385–463 nm. Moreover, polymer films exhibited low dielectric properties in the range of 2.76–2.96 at 1 MHz, as well as prominent mechanical properties with tensile strengths of 66.7–97.4 MPa, a tensile modulus of 1.7–2.1 GPa and elongation at break of 7.2%–12.9%. The polymer films also showed outstanding hydrophobicity with the contact angle in the range of 91.2°–97.9°.  相似文献   

10.
The condensation polymerization of 4,4′‐oxydianiline with pyromellitic dianhydride for the formation of poly(amic acid) and the subsequent imidization for the formation of polyimides were investigated for films prepared with vapor‐deposition polymerization techniques. Fourier transform infrared spectroscopy, thermal analysis, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry of films at different temperatures indicated that additional solid‐state polymerization occurred before imidization. The experiments revealed that, upon vapor deposition, poly(amic acid) oligomers formed that had a number‐average molecular weight of about 1500 Da. Between 100–130 °C, these chains underwent an additional condensation reaction and formed slightly higher molecular weight oligomers. Calorimetry measurements showed that this reaction was exothermic [enthalpy of reaction (ΔH) ~ ?30 J/g] and had an activation energy of about 120 kJ/mol. The experimental ΔH values were compared with results from ab initio molecular modeling calculations to estimate the number of amide groups formed. At higher temperatures (150–300 °C), the imidization of amide linkages occurred as an endothermic reaction (ΔH ~ +120 J/g) with an activation energy of about 130 kJ/mol. The solid‐state kinetics depended on the reaction conversion as well as the processing conditions used to deposit the films. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5999–6010, 2004  相似文献   

11.
A novel fluorinated aromatic dianhydride, 4,4′‐[2,2,2‐trifluoro‐1‐(3‐trifluoromethyl‐phenyl)ethylidene]diphthalic anhydride (TFDA) was synthesized by coupling of 3′‐trifluoromethyl‐2,2,2‐trifluoroacetophenone with o‐xylene under the catalysis of trifluoromethanesulfonic acid, followed by oxidation of KMnO4 and dehydration. A series of fluorinated aromatic polyimides derived from the novel fluorinated aromatic dianhydride TFDA with various aromatic diamines, such as p‐phenylenediamine (p‐PDA), 4,4′‐oxydianiline (ODA), 1,4‐bis(4‐aminophenoxy)benzene (p‐APB), 1,3‐bis(4‐amino‐phenoxy)benzene (m‐APB), 4‐(4‐aminophenoxy)‐3‐trifluoromethylphenylamine (3FODA) and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (6FAPB), were prepared by polycondensation procedure. All the fluorinated polyimides were soluble in many polar organic solvents such as NMP, DMAc, DMF, and m‐cresol, as well as some of low boiling point organic solvents such as CHCl3, THF, and acetone. Homogeneous and stable polyimide solutions with solid content as high as 35–40 wt % could be achieved, which were prepared by strong and flexible polyimide films or coatings. The polymer films have good thermal stability with the glass transition temperature of 232–322 °C, the temperature at 5% weight loss of 500–530 °C in nitrogen, and have outstanding mechanical properties with the tensile strengths of 80.5–133.2 MPa as well as elongations at breakage of 7.1–12.6%. It was also found that the polyimide films derived from TFDA and fluorinated aromatic diamines possess low dielectric constants of 2.75–3.02, a low dissipation factor in the range of 1.27–4.50 × 10?3, and low moisture absorptions <1.3%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4143–4152, 2004  相似文献   

12.
2,2,′3,3′‐Biphenyltetracarboxylic dianhydride (2,2,′3,3′‐BPDA) was prepared by a coupling reaction of dimethyl 3‐iodophthalate. The X‐ray single‐crystal structure determination showed that this dianhydride had a bent and noncopolanar structure, presenting a striking contrast to its isomer, 3,3,′4,4′‐BPDA. This dianhydride was reacted with aromatic diamines in a polar aprotic solvent such as N,N‐dimethylacetamide (DMAc) to form polyamic acid intermediates, which imidized chemically to polyimides with inherent viscosities of 0.34–0.55 dL/g, depending on the diamine used. The polyimides from 2,2,′3,3′‐BPDA exhibited a good solubility and were dissolved in polar aprotic solvents and polychlorocarbons. These polyimides have high glass transition temperatures above 283°C. Thermogravimetric analyses indicated that these polyimides were fairly stable up to 500°C, and the 5% weight loss temperatures were recorded in the range of 534–583°C in nitrogen atmosphere and 537–561°C in air atmosphere. All polyimides were amorphous according to X‐ray determination. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1425–1433, 1999  相似文献   

13.
The cyclohexyl‐substituted salicylaldiminato–Ni(II) complex [O? (3‐C6H11)(5‐CH3)C6H2CH?N‐2,6‐C6H3iPr2]Ni(PPh3)(Ph) ( 4 ) has been synthesized and characterized with 1H NMR and X‐ray structure analysis. In the presence of phosphine scavengers such as bis(1,5‐cyclooctadiene)nickel(0) [Ni(COD)2], triisobutylaluminum (TIBA), and triethylaluminum (TEA), 4 is an active catalyst for ethylene polymerization and copolymerization with the polar monomers tert‐butyl‐10‐undecenoate, methyl‐10‐undecenoate, and 4‐penten‐1‐ol under mild conditions. The polymerization parameters affecting the catalytic activity and viscosity‐average molecular weight of polyethylene, such as the temperature, time, ethylene pressure, and catalyst concentration, are discussed. A polymerization activity of 3.62 × 105 g of PE (mol of Ni h)?1 and a weight‐average molecular weight of polyethylene of 5.73 × 104 g.mol?1 have been found for 10 μmol of 4 and a Ni(COD)2/ 4 ratio of 3 in a 30‐mL toluene solution at 45 °C and 12 × 105 Pa of ethylene for 20 min. The polydispersity index of the resulting polyethylene is about 2.04. After the addition of tetrahydrofuran and Et2O to the reaction system, 4 exhibits still high activity for ethylene polymerization. Methyl‐10‐undecenoate (0.65 mol %), 0.74 mol % tert‐butyl‐10‐undecenoate, and 0.98 mol % 4‐penten‐1‐ol have been incorporated into the polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6071–6080, 2004  相似文献   

14.
A series of organosoluble aromatic polyimides (PIs) was synthesized from 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐4,7‐methanohexahydroindan (3) and commercial available aromatic dianhydrides such as 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA), 4,4′‐sulfonyl diphthalic anhydride (SDPA), or 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropanic dianhydride (6FDA). PIs (IIIc–f), which were synthesized by direct polymerization in m‐cresol, had inherent viscosities of 0.83–1.05 dL/g. These polymers could easily be dissolved in N,N′‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF), pyridine, m‐cresol, and dichloromethane. Whereas copolymerization was proceeded with equivalent molar ratios of pyromellitic dianhydride (PMDA)/6FDA, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA)/6FDA, or BTDA/SDPA, or ½ for PMDA/SDPA, copolyimides (co‐PIs), derived from 3 and mixed dianhydrides, were soluble in NMP. All the soluble PIs could form transparent, flexible, and tough films, and they showed amorphous characteristics. These films had tensile strengths of 88–111 MPa, elongations at break of 5–10% and initial moduli of 2.01–2.67 GPa. The glass transition temperatures of these polymers were in the range of 252–311°C. Except for IIIe, the 10% weight loss temperatures (Td) of PIs were above 500°C, and the amount of carbonized residues of the PIs at 800°C in nitrogen atmosphere were above 50%. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1681–1691, 1999  相似文献   

15.
本文发现α-环糊精包结碳纳米管涂层电极对多巴胺(DA)和肾上腺素(EP)具有显著的增敏和电分离作用,还原峰电位差达390 mV。研究表明α-环糊精包结碳纳米管涂层薄膜表现出了非常令人感兴趣的电催化特性。因抗坏血酸(AA)在α-环糊精包结碳纳米管涂层电极上的氧化是不可逆的,因此利用还原峰进行测定,消除了AA对DA和EP的干扰。由于成本低和制作简便,该电极可用于生物系统电化学研究的生物传感器。  相似文献   

16.
2,4‐Bis‐(3,4‐dicarboxyphenylcarboxyethoxy)‐1‐(2,2‐dicyanovinyl)benzene dianhydride (4) was prepared and reacted with 4,4′‐oxydianiline, 4,4′‐diaminobenzanilide and 4,4′‐(hexafluoroisopropylidene)dianiline to yield novel Y‐type polyimides 5‐7 containing 2,4‐dioxybenzylidenemalononitrile groups as nonlinear optical (NLO) chromophores, which constitute parts of the polymer backbone. The resulting polyimides 5‐7 are soluble in polar solvents such as dimethylsulfoxide and N,N‐dimethylformamide. Polymers 5‐7 showed a thermal stability up to 330 °C in thermogravimetric analysis thermograms with Tg values obtained from differential scanning calorimetry thermograms in the range 179–194 °C. The second harmonic generation (SHG) coefficients (d33) of poled polymer films at the 1064 nm fundamental wavelength were around 5.56 × 10?9 esu. The dipole alignment exhibited exceptionally high thermal stability even at 20 °C higher than the glass‐transition temperature there was no SHG decay below 215 °C because of the partial main‐chain character of polymer structure, which is acceptable for NLO device applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3078–3087, 2008  相似文献   

17.
Dopamine (DA) is a significant neurotransmitter in the central nervous system, coexisting with uric acid (UA) and ascorbic acid (AA). UA and AA are easily oxidizable compounds having potentials close to that of DA for electrochemical analysis, resulting in overlapping voltammetric response. In this work, a novel molecularly imprinted (MI) electrochemical sensor was proposed for selective determination of DA (in the presence of up to 80‐fold excess of UA and AA), relying on gold nanoparticles (Aunano)‐decorated glassy carbon (GC) electrode coated with poly(carbazole (Cz)‐co‐aniline (ANI)) copolymer film incorporating DA as template (DA imprinted‐GC/P(Cz‐co‐ANI)‐Aunano electrode, DA‐MIP‐Aunano electrode). The DA recognizing sensor electrode showed great electroactivity for analyte oxidation in 0.2 mol L?1 pH 7 phosphate buffer. Square wave voltammetry (SWV) was performed within 10?4–10?5 mol L?1 of DA, of which the oxidation peak potential was observed at 0.16 V. The limit of detection (LOD) and limit of quantification (LOQ) were 2.0×10?6 and 6.7×10?6 mol L?1, respectively. Binary and ternary synthetic mixtures of DA‐UA, DA‐AA and DA‐UA‐AA yielded excellent recoveries for DA. Additionally, DA was quantitatively recovered from a real sample of bovine serum spiked with DA, and determined in concentrated dopamine injection solution. The developed SWV method was statistically validated against a literature potentiodynamic method using a caffeic acid modified‐GC electrode.  相似文献   

18.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

19.
4,4′‐Methylenebis(2‐tert‐butylaniline) was synthesized and reacted with pyromellitic dianhydride to produce a polyimide that showed excellent solubility in conventional organic solvents. Solutions of this polyimide could be cast into transparent, flexible and tough films. The number‐average molecular weight, as determined by means of gel permeation chromatography, was 8.9×104 g/mol and the polydispersity index was 1.97. The glass transition temperature was found to be 217°C. The polyimide did not show appreciable decomposition up to 500°C under a nitrogen atmosphere.  相似文献   

20.
Novel AB2‐type azide monomers such as 3,5‐bis(4‐methylolphenoxy)carbonyl azide (monomer 1) , 3,5‐bis(methylol)phenyl carbonyl azide (monomer 2) , 4‐(methylol phenoxy) isopthaloyl azide (monomer 3) , and 5‐(methylol) isopthaloyl azide (monomer 4) were synthesized. Melt and solution polymerization of these monomers yielded hydroxyl‐ and amine‐terminated hyperbranched polyurethanes with and without flexible ether groups. The structures of theses polymers were established using FT‐IR and NMR spectroscopy. The molecular weights (Mw) of the polymers were found to vary from 3.2 × 103 to 5.5 × 104 g/mol depending on the experimental conditions used. The thermal properties of the polymers were evaluated using TGA and DSC: the polymer obtained from monomer ( 1 ) exhibited lowest Tg and highest thermal stability and the polymer obtained from monomer ( 2 ) registered the highest Tg and lowest thermal stability. All the polymers displayed fluorescence maxima in the 425–525 nm range with relatively narrow peak widths indicating that they had pure and intense fluorescence. Also, the polymers formed charge transfer (CT) complexes with electron acceptor molecules such as 7,7,8,8‐tetracyano‐quino‐dimethane (TCNQ) and 1,1,2,2‐tetracyanoethane (TCNE) as evidenced by UV‐visible spectra. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3337–3351, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号