首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel positively charged polymer of quaternary ammonium substituted agarose (Q-agarose) has been synthesized and explored for use as a coating in capillary electrophoresis. The fast and simple coating procedure is based on a multi-site electrostatic interaction between the polycationic agarose polymer and the negatively charged fused-silica surface. By simply flushing fused-silica capillaries with hot polymer solution a positively charged, hydrophilic deactivation layer is achieved. The polymer surface provides an intermediate electroosmotic flow of reversed direction, over a range of pH 2-11, compared to unmodified fused-silica. The coating procedure was highly reproducible with an RSD of 4%, evaluated as the electroosmotic flow mobility for 30 capillaries prepared at 10 different occasions. The application of Q-agarose coated capillaries in separation science was investigated using a set of basic drugs and model proteins and peptides. Due to the intermediate electroosmotic flow generated, the resolution of basic drugs could be increased, compared to using bare fused-silica capillaries. Moreover, the coating enabled separation of proteins and peptides with efficiencies up to 300.000 plates m(-1).  相似文献   

2.
Positively charged starch derivatives were used to modify the inner surface of fused-silica capillaries by addition to running buffer, which were subsequently employed in capillary electrophoresis (CE). Capillaries coated with the cationic starch derivatives were shown to generate a stable, reversed electroosmotic flow (EOF) in the investigated pH range of 3-9. The presented coating procedure was fast, based on a simple rinsing protocol where the polymer created a physically adsorbed, cationic polymer layer. Among the additives studied, a quaternary ammonium starch derivative showed a fast EOF mobility and effectively suppressed the adsorption of proteins. The intra- and inter-day reproducibility of the coating referring to the EOF mobility were satisfactory with relative standard deviation (RSD) of 0.27 and 1.67%, respectively. The coating enabled separation of some protein mixtures including basic proteins within l3 min with efficiencies up to 280,000 plates/m. In addition, this cationic starch derivative possessed a good solubility (about 100mg/mL), and it does not significantly contribute to the background adsorption in the UV region of 190-400 nm.  相似文献   

3.
A new application of the polymeric ionic liquid (PIL) in capillary electrophoresis is reported. Poly(1-vinyl-3-butylimidazolium bromide) was physically adsorbed on silica capillary as the simple and effective coating for capillary electrophoresis (CE) analysis, in which the PIL is not present in the background electrolyte. The electroosmotic flow (EOF) of the PIL-coated capillary as compared with that of the bare fused-silica capillary shows a different dependence on electrolyte pH values. The EOF is reversed over a wide pH range from 3.0 to 9.0 and shows good repeatability. It is also found that the coated capillary has a good tolerance to some organic solvents, 0.1 M NaOH and 0.1 M HCl. The PIL-coated capillary has been employed in different areas. Both the basic proteins and anionic analytes can be well separated by PIL-coated capillaries in a fast and easy way. The PIL-coated capillary is also able to separate organic acid additives in a grape juice. The results showed that this type of coating provides an alternative to the CE separation of anions and basic proteins.  相似文献   

4.
A hydrophilic polymer, poly(vinylpyrrolidone) (PVP), was employed for suppressing the electroosmotic flow (EOF). A capillary was filled with aqueous PVP solution for coating the capillary wall with PVP; the PVP solution was then replaced by a migration buffer solution containing no PVP. Three types of PVP with different molecular weights were examined. The EOF was suppressed more effectively as the molecular weight of PVP increased. The EOF in the coated capillary was approximately 10-fold smaller than that of a bare capillary and was constant in the pH range of 6-8. The suppressed EOF was stable even when no PVP was added to the migration buffer. However, the EOF increased significantly when sodium dodecyl sulfate was added into the migration buffer. The method was applied for determining the electrophoretic mobilities of inorganic anions that have negative electrophoretic mobilities larger than the electroosmotic mobility of the bare capillary. A novel method for determining the electrophoretic mobilities was proposed based on the linear relationship between electric current and electrophoretic mobility. The electrophoretic mobility was proportional to the electric current. Therefore, the intercept of the regression equation represents the electrophoretic mobility at room temperature. The electrophoretic mobilities were in good agreement with the absolute electrophoretic mobilities.  相似文献   

5.
A stable polyelectrolyte multilayer (PEM) coating was investigated for use in open-tubular capillary electrochromatography (o-CEC). In this approach, the PEM consisted of the cationic polymer of a quaternary ammonium salt, poly(diallyldimethylammonium chloride) and the anionic polymeric surfactant, poly(sodium undecylenic sulfate). Both the cationic and anionic polymers were physically adsorbed to the surface of a fused-silica capillary by use of a simple coating procedure. This procedure involved an alternate rinse of the positively and negatively charged polymers. The performance of the PEM coating as a dynamic stationary phase was evaluated by use of electrochromatographic experiments and showed good selectivity for both phenols and benzodiazepines. Reproducibility of the PEM coating was also evaluated by calculating the relative standard deviations (RSDs) of the electroosomotic flow (EOF). The run-to-run and capillary-to-capillary RSD values of the EOF were less than 1.5%. The endurance of the coating was more than 100 runs. The importance of the PEM coating was illustrated by comparing separations on a bare uncoated capillary with the coated capillary. In addition, the chromatographic performance using o-CEC and micellar electrokinetic chromatography (MEKC) was compared for the separation of benzodiazepines.  相似文献   

6.
A physically adsorbed and covalently bonded porphyrin derivative, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, H2TPFPP, has been used as a fused-silica capillary wall modifier in open tubular capillary electrochromatography (OT-CEC), and its influence on the electroosmotic flow (EOF) velocity and on the selectivity of OT-CEC separations of a set of model aromatic carboxylic acids has been tested. Whereas most of the coatings of this category bring about an increase in selectivity with a concomitant slow down of the EOF, H2TPFPP coating, depending on pH of the background electrolyte used, resulted both in decreasing of EOF at pH 8.5 by 5% and in increasing of EOF by 10–43% at pH 6 and 5, respectively. The separation efficiency and the resolution of aromatic carboxylic acids separation in coated capillaries, namely in that one with covalent coating, were better than in the bare fused-silica capillary. The perspectives of H2TPFPP as capillary wall modifier are visualized in introducing well defined electroosmotic properties of materials used for miniaturized separation channels preparation in chip-based electromigration devices.  相似文献   

7.
The surface chemistry of the inner wall of fused-silica capillaries is one important means to control the magnitude as well as the direction of the electroosmotic flow and the adsorption activity. A method was developed to change the surface characteristics of fused-silica capillaries by binding tentacle-like oligourethane groups onto the inner surface. The electroosmotic flow at a buffer pH of 6-9 was reduced by 15 to 40% compared to that in a bare fused-silica tubing, dependent on the type of coating. Sample adsorption is diminished at the same time resulting in a separation of proteins with higher resolution and good migration time precision. At a pH below 4.5 the electroosmotic flow is reversed into the anodic direction, which offers further possibilities for the separation of positively charged analytes as demonstrated for the separation of aromatic and biogenic amines.  相似文献   

8.
A fused-silica capillary that is wall-modified via chemically bonding a sulfonated polymer to the capillary wall has a uniform negative charge density on its surface and produces an electroosmotic flow (EOF) greater than 4 x 10(-4) cm2 V(-1) s(-1) The EOF is nearly independent of buffer pH over the pH range of 2 to 10 and is lower than the EOF obtained for the bare fused-silica capillary at the more basic pH but is higher at the more acidic buffer pH. Optimization of buffer pH can be based on analyte pKa values to improve the overall quality of the capillary zone electrophoresis (CZE) separation of complex mixtures of weak acid and base analytes. Because of the high EOF in an acidic buffer, the capillary is useful for the separation of weak organic bases which are in their cation forms in the acidic buffer. EOF for the sulfonic acid bonded phase capillary can be adjusted via buffer additives such as organic solvent, tetraalkylammonium salts, multivalent cations and alkylsulfonic acids. The advantages of utilizing buffer pH and the EOF buffer modifiers to enhance migration time, selectivity, and resolution in CZE separations with this capillary are illustrated using a series of test analyte mixtures of inorganic anions, carboxylic acids, alkylsulfonic acids, benzenesulfonic acids, sulfas, pyridines, anilines or small-chain peptides.  相似文献   

9.
Positively charged amylopectin, which is a major constituent of cationic starch, was used to modify the inner surface of fused-silica capillaries by addition to the running solution, which was subsequently employed in CE. Capillaries filled with cationic amylopectin derivatives were shown to generate a stable reversed EOF in the investigated range of pH 4-8. Among the additives studied, quaternary ammonium amylopectin derivatives with high amino and low hydroxypropyl groups showed fast electroosmotic mobility and very effectively suppressed the adsorption of proteins. The run-to-run and batch-to-batch repeatability of the procedures were satisfactory with RSDs of 0.5% and 2.4%, respectively. A basic protein, alpha-chymotrypsinogen, migrated within 6 min and the theoretical plate number of it reached 560 000 plates/m.  相似文献   

10.
Han JH  Chun MS  Riaz A  Chung DS 《Electrophoresis》2005,26(2):480-486
For large-volume stacking with the electroosmotic flow pump (LVSEP) in capillary electrophoresis of anionic analytes it is required that the electroosmotic mobility (EOM) should be smaller than the magnitudes of the effective mobilities of the analytes. When a fused-silica capillary is treated with an acidic solution, the silanoate group on the silica surface is neutralized to silanol and the EOM is suppressed. Due to the slow deprotonation equilibrium of the silanol group at an intermediate pH, this reduced EOM can be retained during a number of electrophoresis runs. Using a bare fused-silica capillary preconditioned with 0.01 M HCl, successful LVSEP at pH 6.0 was achieved for weakly acidic compounds with two orders of magnitude enhancements in the concentration sensitivity. The repeatability in migration times of ten analytes stacked by LVSEP in a single day was excellent with the relative standard deviation (RSD) less than 1% (n = 6). The day-to-day repeatability was also excellent with RSD less than 3% (n = 3 x 6) when the capillary was preconditioned each day.  相似文献   

11.
Our dynamic capillary electrophoresis model which uses material specific input data for estimation of electroosmosis was applied to investigate fundamental aspects of isoelectric focusing (IEF) in capillaries or microchannels made from bare fused-silica (FS), FS coated with a sulfonated polymer, polymethylmethacrylate (PMMA) and poly(dimethylsiloxane) (PDMS). Input data were generated via determination of the electroosmotic flow (EOF) using buffers with varying pH and ionic strength. Two models are distinguished, one that neglects changes of ionic strength and one that includes the dependence between electroosmotic mobility and ionic strength. For each configuration, the models provide insight into the magnitude and dynamics of electroosmosis. The contribution of each electrophoretic zone to the net EOF is thereby visualized and the amount of EOF required for the detection of the zone structures at a particular location along the capillary, including at its end for MS detection, is predicted. For bare FS, PDMS and PMMA, simulations reveal that EOF is decreasing with time and that the entire IEF process is characterized by the asymptotic formation of a stationary steady-state zone configuration in which electrophoretic transport and electroosmotic zone displacement are opposite and of equal magnitude. The location of immobilization of the boundary between anolyte and most acidic carrier ampholyte is dependent on EOF, i.e. capillary material and anolyte. Overall time intervals for reaching this state in microchannels produced by PDMS and PMMA are predicted to be similar and about twice as long compared to uncoated FS. Additional mobilization for the detection of the entire pH gradient at the capillary end is required. Using concomitant electrophoretic mobilization with an acid as coanion in the catholyte is shown to provide sufficient additional cathodic transport for that purpose. FS capillaries dynamically double coated with polybrene and poly(vinylsulfonate) are predicted to provide sufficient electroosmotic pumping for detection of the entire IEF gradient at the cathodic column end.  相似文献   

12.
With unique 3‐D architecture, the application of core‐based hyperbranched polyethyleneimine (CHPEI), as a capillary coating in capillary electrophoresis, is demonstrated by manipulation of the electroosmotic mobility (EOF). CHPEI coatings (CHPEI5, Mw ≈? 5000 and CHPEI25, Mw ≈? 25 000) were physically adsorbed onto the inner surface of bare fused‐silica capillary (BFS) via electrostatic interaction of the oppositely charged molecules by rinsing the capillaries with different CHPEI aqueous solutions. The EOF values of the coated capillaries were measured over the pH range of 4.0–9.0. At higher pH (pH >6) the coated capillary surface possesses excess negative charges, which causes the reversal of the EOF. The magnitudes of the EOF obtained from the coated capillaries were three‐fold lower than that of BFS capillary. Desirable reproducibility of the EOF with % RSD (n = 5) ? 2 was obtained. Effect of ionic strength, stability of the coating (% RSD = 0.3) and the dependence of the EOF on pH (% RSD = 0.5) were also investigated. The CHPEI‐coated capillaries were successfully utilized to separate phenolic compounds, B vitamins, as well as basic drugs and related compounds with reasonable analysis time (<20 min) and acceptable migration‐time repeatability (<0.7% RSD for intra‐capillary and <2% RSD for inter‐capillary).  相似文献   

13.
We synthesised and used new type of quaternary ammonium salt [S-(-)-2-hydroxymethyl-1,1-dimethylpyrrolidinium tetrafluoroborate] as effective additive to acidic background electrolytes. We used this quaternary ammonium salt as effective agent for capillary zone electrophoresis separation of model mixture of five tricyclic antidepressants (amitriptyline, nortriptyline, imipramine, desipramine and clomipramine) as model analytes. We observed that addition of S-(-)-2-hydroxymethyl-1,1-dimethylpyrrolidinium tetrafluoroborate ([HMDP](+) [BF(4)](-)) to acidic background electrolytes leads to suppression of magnitude of electroosmotic flow (EOF) and gradually change the direction of the EOF. Baseline separation of five TAs was achieved by using of 91.1 mmol L(-1) (20 gL(-1)) of [HMDP](+) [BF(4)](-) in 25 mmol L(-1) sodium phosphate pH 2.5, where electroosmotic mobility was -11.3 x 10(-9) m(2) V(-1) s(-1). We achieved baseline separation of five TAs with using of [HMDP](+) [BF(4)](-) as water solution too. We observed that [HMDP](+) [BF(4)](-) can be used as buffer additive, which offers relatively smaller anodic electroosmotic flow instead of cationic surfactants that are mostly used for genarating of anodic electroosmotic flow in capillary electrophoresis.  相似文献   

14.
Nonaqueous capillary electrophoresis using a titania-coated capillary   总被引:1,自引:0,他引:1  
In this work, an ordered mesoporous titania film was introduced to coat a capillary by means of the sol-gel technique. Its electroosmotic flow (EOF) property was investigated in a variety of nonaqueous media (methanol, formamide and N,N'-dimethylformamide and mixtures of methanol and acetonitrile). The titania-coated capillary exhibited a distinctive EOF behavior, the direction and magnitude of which were strongly dependent on various parameters such as the solvent composition, apparent pH (pH*) and the electrolytes. The nonaqueous capillary electrophoresis separation of several alkaloids was investigated in the positively charged titania-coated capillary. Comparison of separation between coated and uncoated capillaries under optimal nonaqueous conditions was also carried out.  相似文献   

15.
In aqueous capillary electrophoresis the electroosmotic flow (EOF) can be strongly suppressed or eliminated by coating the capillary surface silanols either by buffer additive adsorption or chemical modification. Hydrophilic coatings, e.g., polyvinyl alcohol (PVA) proved to be most efficient for EOF control in applications like DNA analysis. In nonaqueous capillary electrophoresis (NACE), however, the EOF cannot be totally suppressed with these capillaries and coating efficiency turned out to be solvent-depending. In this paper, fused-silica capillaries with monomeric and polymeric coatings differing in hydrophobicity and chemical properties (vinyl, vinyl acetate, vinyl alcohol and acrylates with different alkyl chain length) were investigated. Besides studying the EOF characteristics with different organic solvents and water, gas chromatography (GC) measurements were carried out to probe the silanol reduction via ether retention and the surface hydrophobicity by retention of nonane. Good correlations between GC results and EOF magnitude could be found. It could be demonstrated that the polymeric coating has to be solvatized by the buffer solvent to reduce the EOF. The PVA coating was optimal for aqueous systems but not effective for some nonaqueous buffers. On the other hand, polyvinyl acetate and polyethyl acrylate as polymeric coatings proved to be optimal to reduce the EOF in NACE.  相似文献   

16.
17.
Li Y  Xiang R  Horváth C  Wilkins JA 《Electrophoresis》2004,25(4-5):545-553
A new kind of monolithic capillary column was prepared for capillary electrochromatography (CEC) with a positively charged polymer layer on the inner wall of a fused-silica capillary and a neutral monolithic packing as the bulk stationary phase. The fused-silica capillary was first silanized with 3-glycidoxypropyltrimethoxysilane (GPTMS). Polyethyleneimine (PEI) was then covalently bonded to the GPTMS coating to form an annular positively charged polymer layer for the generation of electroosmotic flow (EOF). A neutral bulk monolithic stationary phase was then prepared by in situ copolymerization of vinylbenzyl chloride (VBC) and ethylene glycol dimethacrylate in the presence of 1-propanol and formamide as porogens. Benzyl chloride functionalities on the monolith were subsequently hydrolyzed to benzyl alcohol groups. Effects of pH on the EOF mobility of the column were measured to monitor the completion of reactions. Using a column with this design, we expected general problems in CEC such as irreversible adsorption and electrostatic interaction between stationary phase and analytes to be reduced. A peptide mixture was successfully separated in counter-directional mode CEC. Comparison of peptide separations in isocratic monolithic CEC, gradient HPLC and capillary zone electrophoresis (CZE) indicated that the separation in CEC is governed by a dual mechanism that involves a complex interplay between selective chromatographic retention and differential electrophoretic migration.  相似文献   

18.
Modelling electrophoretic mobility as a function of pH can be simultaneously used for determination of ionization constants and for rapid selection of the optimum pH for separation of mixtures of the modelled compounds. In this work, equations describing the effect of pH on electrophoretic behaviour were used to investigate migration of a series of polyprotic amphoteric peptide hormones between pH 2 and 12 in polybrene-coated capillaries. Polybrene (hexadimethrin bromide) is a polymer composed of quaternary amines that is strongly adsorbed by the fused-silica inner surface, preventing undesired interactions between the peptides and the inner capillary wall. In polybrene-coated capillaries the separation voltage must be reversed, because of the anodic electroosmotic flow promoted by the polycationic polymer attached to the inner capillary wall. The possibility of using polybrene-coated capillaries for determination of accurate ionization constants has been evaluated and the optimum pH for separation of a mixture of the peptide hormones studied has been selected. Advantages and disadvantages of using bare fused-silica and polybrene-coated capillaries for these purposes are discussed.  相似文献   

19.
Inexpensive and disposable polyester microchips were fabricated through photolithographic and wet-chemical etching procedure, followed by replication using an imprinting method at room temperature. Laboratory-scale laser-induced fluorescence equipment was employed as a detection system. The generation of electroosmotic flow (EOF) on the polyester channels was discussed in this paper. Surfactants in the running buffer had a significant effect on the EOF depending on their types. The epsilon potential of the electric double layer formed by adsorbing sodium lauryl sulfate molecules on the wall of polyester channels seemed to be constant within the buffer pH investigated. EOF could also be suppressed to zero by adding polyoxyethylene 23 lauryl ether into the running buffer. The separation of two laser dyes was obtained using polyester chips through both micellar electrokinetic chromatography and capillary zone electrophoresis. The polyester channels modified with 10-undecen-1-ol exhibited a dramatically high-separation efficiency compared with the conventional fused-silica capillary tubes.  相似文献   

20.
In the present paper, two new methods, sol-gel and chemical bonding methods, were proposed for preparation of sulfonated fused-silica capillaries. In the sol-gel method, a fused-silica capillary was coated with the sol solution obtained by hydrolysis of 3-mercaptopropyltrimethoxysilane (MPTS) and tetramethoxysilane, and followed by age; while in the chemical bonding method, a capillary was chemically bonded directly with MPTS. Then, both the resulting capillaries were oxidized with an aqueous solution of hydrogen peroxide solution (H2O2) (30%, m/m) to obtain the sulfonated capillaries. The electroosmotic flow (EOF) for the sulfonated capillaries was found to remain almost constant within the studied pH range, and greater than that of the uncoated capillary. However, the coating efficiency of the capillary prepared by chemical bonding method was higher than that by sol-gel method, by comparing their magnitude of the EOF, the degree of disguise of the silanol and reproducibility of preparation procedure. The effects of the electrolyte's concentration and the content of methanol (MeOH) on the EOF were also studied. Especially, the study of the apparent pH (pH*) on the EOF in a water-MeOH system was reported. Finally, capillary electrophoretic separation of seven organic acids was achieved within 6.5 min under optimal condition using the chemically bonded sulfonated capillary. Moreover, separation of four alkaloids on the sulfonated capillary was compared with that on uncoated capillary in different conditions. Ion-exchange mechanism was found to play a key role for separation of these four basic analytes on the sulfonated capillary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号