首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report on the effect of temperature fluctuations on the midinfrared electroluminescence from a cascade of coupled AlInAs quantum dots and GaAs quantum wells. The observed line width is significantly broadened with increasing temperature. We then present our theoretical results on homogeneous line broadening due to temperature fluctuations for our experimental system. Our numerical simulations clearly indicate that, temperature fluctuations can account for the observed finite width of the emission lines at high-temperatures.  相似文献   

3.
We describe the observation of novel localization in mesoscopic quantum dots and quantum dot arrays, which are realized in high mobility GaAs/AlGaAs heterojunctions using the split‐gate technique. With a sufficient gate voltage applied to form the devices, their resistance diverges as the temperature is lowered below a degree Kelvin, behavior which we attribute to localization. Evidence for the localization is found over the entire range of gate voltage for which the dots are defined, persisting to conductances higher than 50e2/h.  相似文献   

4.
We study the transport mechanisms in a quantum dot MODFET by tuning the localization induced by charge stored on the quantum dots with light. The temperature dependence of the resistivity of a macroscopic sample reveals a hopping transport when the dots contain an excess of electrons. The resistance of a mesoscopic sample however, which is capable of detecting single photons, exhibits a much weaker dependence upon temperature. This points towards source-drain tunnelling as a transport mechanism and is confirmed by a statistical analysis of the single-photon-induced conductance steps. The complexity of the conducting paths increases as the average hopping length reduces.  相似文献   

5.
We study ground states and far-infrared spectra (FIR) of two electrons in four-minima quantum-dot molecule in magnetic field by exact diagonalization. Ground states consist of altering singlet and triplet states, whose frequency, as a function of magnetic field, increases with increasing dot–dot separation. When the Zeeman energy is included, only the two first singlet states remain as ground states. In the FIR spectra, we observe discontinuities due to crossing ground states. Non-circular symmetry induces anticrossings, and also an additional mode above ω+ in the spin-triplet spectrum. In particular, we conclude that electron–electron interactions cause only minor changes to the FIR spectra and deviations from the Kohn modes result from the low-symmetry confinement potential.  相似文献   

6.
The propagation of a weak probe field in a three-level quantum-dot molecule is investigated by employing the tunnel coupling. It is shown that in the absence of tunnel coupling, the propagation of light pulse is superluminal, similar to a simple two-level system. A high-resolution dip appears in optical spectra due to the presence of tunnel coupling. We show that this narrow dip leads to the subluminal light propagation with doublet absorption, so the group velocity of a light pulse can be controlled by interdot tunnel coupling. It is also demonstrated that by applying an indirect incoherent pumping field to the probe transition, the absorption doublet switches to the gain doublet and then the absorption-free superluminal light propagation is appeared.  相似文献   

7.
A model Hamiltonian is proposed for the localization–delocalization transition in quantum dots. By considering most relevant degrees of freedom, we obtain a finite dimensional Hilbert space. Through exact diagonalization, we find the ground state energies of the system as the number of electrons is varied. This explains the peculiar pattern of the electron addition energies, which are measured as a function of the top and side gate voltages.  相似文献   

8.
《Current Applied Physics》2015,15(11):1421-1427
The effect of negative electric field on spin-dependent tunneling in double barrier heterostructures of III–V semiconductor is theoretically investigated. The transfer matrix approach is used by considering Dresselhaus and induced-Rashba effect to calculate the barrier transparency and polarization efficiency. Cent percent polarization efficiency can be achieved for the negative electric field by increasing the width of the potential barrier. The separation between spin-up and spin-down resonances are evaluated. The separation between spin resonances and tunneling lifetime of electrons are observed for various negative electric fields as well as for various barrier widths. The linear variation of spin separation and tunneling lifetime of electrons are observed as a function of negative electric field.  相似文献   

9.
We present a systematic theoretical study, based on the Kane–Weiler 8×8 k·p model, of the linear Zeeman splitting introduced by the interaction between the angular momentum and the magnetic field which can give a measure of the non-linear Zeeman effect associated with interband coupling and diamagnetic contributions. The conduction and valence bands g-factors are calculated for InSb spherical and semi-spherical quantum dots. The calculations of the g-factors showed an almost linear dependence, for the ground state, on the magnetic field. We have also found that the strong magnetic field dependence as well as the dependence on the dot size of the effective spin splitting can be unambiguously attributed to the strength of the inter-level mixing.  相似文献   

10.
Studies of CdTe/ZnTe quantum-dot superlattices (self-assembled quantum-dot multilayers) have been carried out by optical spectroscopy methods in a wide range of temperatures. It has been shown that the ZnTe spacer layer thickness affects the properties of these quantum-dot superlattices due to changes in the elastic strain distribution pattern. An additional luminescence band appearing in the spectrum of the structure with the thinnest ZnTe spacer layer exhibits an anomalous shift of the peak position and an unusual behavior of integral intensity with the temperature increase. We assume that the spectrum of CdTe/ZnTe quantum-dot superlattices with the thinnest ZnTe spacer is caused by two kinds of excitonic states—spatially indirect and spatially direct.  相似文献   

11.
A sub-diffraction limit fluorescence localization microscope was constructed using a standard cooled 1.4 mega-pixel fluorescence charge-coupled device (CCD) camera to simultaneously resolve closely adjacent paired quantum dots on a flat surface with emissions of 540 and 630 nm. The images of the overlapping Airy discs were analyzed to determine the center of the point spread function after noise reduction using Fourier transformation analysis. The Cartesian coordinates of the centers of the point spread functions were compared in serial images. Histograms constructed from serial images fit well to Gaussian functions for resolving two quantum dots separated by as little as 10 nm in the xy coordinates. Statistical analysis of multiple pairs validated discrimination of inter-fluorophore distances that vary by 10 nm. The method is simple and developed for xy resolution of dilute fluorophores on a flat surface, not serial z sectioning.  相似文献   

12.
By embedding a layer of self-assembled quantum dots into a field-effect structure, we are able to control the exciton charge in a single dot. We present the results of photoluminescence experiments as a function of both charge and magnetic field. The results demonstrate a hierarchy of energy scales determined by quantization, the direct Coulomb interaction, the electron–electron exchange interaction, and the electron–hole exchange interaction. For excitons up to the triply charged exciton, the behavior can be understood from a model assuming discrete levels within the quantum dot. For the triply charged exciton, this is no longer the case. In a magnetic field, we discover a coherent interaction with the continuum states, the Landau levels associated with the wetting layer.  相似文献   

13.
Recently, new quantum features have been observed and studied in the area of nanostructured layers. Nanograting on the surface of the thin layer imposes additional boundary conditions on the electron wave function and induces G-doping or geometry doping. G-doping is equivalent to donor doping from the point of view of the increase in electron concentration n. However, there are no ionized impurities. This preserves charge carrier scattering to the intrinsic semiconductor level and increases carrier mobility with respect to the donor-doped layer. G-doping involves electron confinement to the nanograting layer. Here, we investigate the system of multiple nanograting layers forming a series of hetero- or homojunctions. The system includes main and barrier layers. In the case of heterojunctions, both types of layers were G-doped. In the case of homojunctions, main layers were G-doped and barrier layers were donor-doped. In such systems, the dependence of n on layer geometry and material parameters was analysed. Si and GaAs homojunctions and GaAs/AlGaAs, Si/SiGe, GaInP/AlGAs, and InP/InAlAs heterojunctions were studied. G-doping levels of 1018–1019 cm−3 were obtained in homojunctions and type II heterojunctions. High G-doping levels were attained only when the difference between band gap values was low.  相似文献   

14.
A steady-state rate-equation model for temperature-dependent luminescence spectra from localized-state material system is presented. The effects of thermal emission, recapturing, radiative and nonradiative recombination are taken into account in the model. Two localized-state material systems, including InAs/GaAs quantum-dot and InGaN/GaN-multi-quantum-well samples were prepared. It is found that the temperature-dependent behaviors of luminescence emission energy obtained from the two samples are quite different. In the mid-temperature range, the emission peaks exhibit a redshift for quantum-dot sample, but a blueshift for multi-quantum-well sample. The peak energies of the luminescence spectra are simulated in this model and show a good agreement with experiment. The corresponding luminescence mechanisms of carriers in localized-state material systems, which lead to the diversity are quantitatively discussed in detail by the model.  相似文献   

15.
The size distribution functions for nanoclusters in quantum-dot heterostructures are calculated within the LSW theory. The most common numerical characteristics are calculated for these distributions. The corresponding size distribution functions are selected by means of comparison of the calculated dispersion and mean square deviation with the experimental values obtained for real quantum-dot heterostructures. The regularities of variations of certain numerical characteristics as a function of growth mechanism are shown for different distributions, from the well-known modified Wagner and Lifshitz-Slezov distributions to the distributions proposed in this work. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 59–66, April, 2006.  相似文献   

16.
We have performed Hartree-Fock calculations of the electronic structure of N ≤ 10 electrons in a quantum dot modeled with a confining Gaussian potential well. We discuss the conditions for the stability of N bound electrons in the system. We show that the most relevant parameter determining the number of bound electrons is V 0 R 2. Such a feature arises from widely valid scaling properties of the confining potential. Gaussian Quantum dots having N = 2, 5, and 8 electrons are particularly stable in agreement with the Hund rule. The shell structure becomes less and less noticeable as the well radius increases.   相似文献   

17.
We introduce a photoluminescence inner core excitation (PLICE) for the studies of semiconductor quantum structures. This novel method, in which we use synchrotron radiation as tunable excitation source, is expected to facilitate us to obtain electronic and compositional information about buried quantum structures. Here we report experimental results on quantum dots (QDs) and quantum wires (QWRs), in order to demonstrate potential applicability of the method to the semiconductor nanostructure studies.  相似文献   

18.
We have performed optically detected resonance (ODR) spectroscopy on modulation-doped GaAs/AlGaAs quantum wells of different widths in which lateral fluctuations of the well width were purposely introduced by growth interruption at the interfaces. These monolayer fluctuations form quantum dots for which confinement and Coulomb correlation energies are comparable. By monitoring resonant changes of the dot ensemble photoluminescence induced by far-infrared (FIR) radiation in a magnetic field, we have observed cyclotron resonance (CR) of free electrons in the widest wells, as well as internal transitions of mobile and localized charged excitons. The latter, which are forbidden by magnetic translational invariance, have previously not been observed. For the narrower wells the effects of non-parabolicity and carrier localization on the CR and CR-like transitions have to be included for a proper interpretation of the measurements.  相似文献   

19.
The persistent diamagnetic current in a GaAs quantum dot with Gaussian confinement is calculated. It is shown that except at very low temperature or at high temperature, the persistent current increases with decreasing temperature. It is also shown that as a function of the dot size, the diamagnetic current exhibits a maximum at a certain confinement length. It is furthermore shown that for a shallow potential, the persistent current shows an interesting maximum structure as a function of the depth of the potential. At low temperature, the peak structure is pretty sharp but becomes broader and broader with increasing temperature.  相似文献   

20.
A variational formalism for the calculation of the binding energies of hydrogenic donors in a parabolic diluted magnetic semiconductor quantum dot is discussed. Results are obtained for Cd Mn Te/Cd Mn Te structures as a function of the dot radius in the presence of external magnetic and electric fields applied along the growth axis. The donor binding energies are computed for different field strengths and for different dot radii. While the variation of impurity binding energy with dot radii and electric field are as expected, the polarizability values enhance in a magnetic field. However, for certain values of dot radii and in intense magnetic fields the polarizability variation is anomalous. This variation of polarizability is different from non- magnetic quantum well structures. Spin polaronic shifts are estimated using a mean field theory. The results show that the spin polaronic shift increases with magnetic field and decreases as the electric field and dot radius increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号