首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.  相似文献   

2.
New complexes of type [M(HL)(CH3COO)(OH2)m]·nH2O (where M:Co, m = 2, n = 2; M:Ni, m = 2, n = 1.5; M:Zn, m = 0, n = 2.5 and M:Cd, m = 0, n = 0; H2L:5-bromo-N,N′-bis-(salicylidene)-o-tolidine) have been synthesized and characterized by microanalytical, IR, UV–Vis-NIR and magnetic data. Electronic spectra of Co(II) and Ni(II) complexes are characteristic for an octahedral stereochemistry. The IR spectra indicate a chelate coordination mode for mono-deprotonated Schiff base and a bidentate one for acetate ion. The thermal transformations are complex according to TG and DTA curves including dehydration, acetate decomposition and oxidative degradation of the Schiff base. The final product of decomposition is the most stable metallic oxide.  相似文献   

3.
Inclusion compounds (intercalates) of fluorinated graphite matrix with ethyl acetate (C2FxBrz·yCH3COOC2H5, x = 0.49, 0.69, 0.87, 0.92, z = 0.01) were prepared by guest substitution from acetonitrile to ethyl acetate. The kinetics of the thermal decomposition (the first stage of filling → the second stage of filling) was studied under isothermal conditions at 291–307 K. The relationship of the host matrices’ structure with inclusion compounds’ thermal properties and kinetic parameters is discussed.  相似文献   

4.
Inclusion compounds (intercalates) of fluorinated graphite matrix with butanone (C2FxBrz·yCH3COC2H5, x = 0.49, 0.69, 0.87, 0.92, z ≈ 0.01) were prepared by guest substitution from acetonitrile to butanone. The kinetics of the thermal decomposition (the 1st stage of filling → the 2nd stage of filling) was studied under isothermal conditions at 294–313 K. The relationship of the host matrices structure with inclusion compounds’ thermal properties and kinetic parameters is discussed.  相似文献   

5.
New copper (II) complexes of Schiff bases with 1,2-di(imino-2-aminomethylpyridil)ethane with the general composition CuLX m (H2O) x , [L = Schiff base, X = Cl?, Br?, NO3 ?, ClO4 ?, CH3COO?, m = 2; X = SO4 2?, m = 1] were prepared by template synthesis. The complexes were characterized by elemental analysis, conductivity measurements, magnetic moments, IR, UV–VIS and EPR spectra. The thermal behavior of complexes was studied using thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Infrared spectra of all complexes are in good agreement with the coordination of a neutral tetradentate N4 ligand to the cooper (II) through azomethinic and pyridinic nitrogen. Magnetic, EPR and electronic spectral studies show a monomeric distorted octahedral geometry for all Cu(II) complexes. Conductance measurements suggest the non-electrolytic nature of the compounds, except for copper (II) nitrate and perchlorate complexes which are 1:2 electrolytes. Heats of decomposition, ΔH, associated with the exothermal effects were also determined.  相似文献   

6.
Testosterone and testosterone enanthate are performance-enhancing substances that are banned in racehorses competing in the State of Pennsylvania (PA). A tolerance concentration of 2,000 pg mL?1 plasma has been established for testosterone in intact colts and stallions at the time they are competing in PA. Testosterone enanthate is a precursor of testosterone and can be used to boost plasma testosterone concentration above natural, age and seasonally variable plasma concentration. To control abuse, a verifiable method for rapid determination of both substances in equine plasma was needed. For this reason, an ultra high performance liquid chromatography-tandem mass spectrometry method for high-throughput analysis of both analytes in equine plasma was developed. Analytes were recovered from plasma by liquid–liquid extraction using mixture of methyl tert-butyl ether and ethyl acetate (50:50, v/v), separated on a C18 sub-2 μm column and detected on a triple quadrupole mass spectrometer using positive electrospray ionization mode with selected reaction monitoring scan. SRM ion transitions of m/z 289 → m/z 97, m/z 289 → m/z 109, m/z 289 → m/z 79 were used for testosterone identification while m/z 401 → m/z 253, m/z 401 → m/z 271, m/z 401 → m/z 97 were employed for testosterone enanthate. Retention time and product ion intensity ratio were used as confirmation criteria to ascertain the presence of both analytes in equine plasma. The limits of detection, quantification and confirmation were 50 pg 0.5 mL?1, 100 pg 0.5 mL?1 and 250 pg 0.5 mL?1, respectively for both analytes. The method was validated for recovery efficiency, sensitivity, matrix effect, linearity, precision and accuracy. This method is routinely used in the PA program for androgenic anabolic steroids doping control in racehorses and in the on-going testosterone enanthate pharmacokinetics study. The method is defensible, fast, selective, specific and reproducibly reliable.  相似文献   

7.
The expressions to calculate the critical rate of temperature rise of thermal explosion $ ({\text{d}}T / {\text{d}}t)_{{\text{T}_{\text{b}} }} $ for energetic materials (EMs) were derived from the Semenov’s thermal explosion theory and autocatalytic reaction rate equation of nth order, CnB, Bna, first-order, apparent empiric-order, simple first-order, Au, apparent empiric-order of m = 0, n = 0, p = 1 and m = 0, n = 1, p = 1, using reasonable hypotheses. A method to determine the kinetic parameters in the autocatalytic-decomposing reaction rate equations and the $ ({\text{d}}T / {\text{d}}t)_{{\text{T}_{\text{b}} }} $ in EMs when autocatalytic decomposition converts into thermal explosion from data of DSC curves at different heating rate was presented. Results show that (1) under non-isothermal DSC conditions, the autocatalytic-decomposing reaction of NC (12.97 % N) can be described by the first-order autocatalytic reaction rate equation dα/dt = 1016.00exp(?174520/RT)(1 ? α) + 1016.00exp(?163510/RT)α(1 ? α); (2) the value of $ ({\text{d}}T / {\text{d}}t)_{{\text{T}_{\text{b}} }} $ for NC (12.97 % N) when autocatalytic decomposition converts into thermal explosion is 0.354 K s?1.  相似文献   

8.
The propulsion of most of the operating satellites comprises monopropellant (hydrazine––N2H4) or bipropellant (monometilydrazine—MMH and nitrogen tetroxide) chemical systems. When some sample of the propellant tested fails, the entire sample lot shall be rejected, and this action has turned into a health problem due to the high toxicity of N2H4. Thus, it is interesting to know hydrazine thermal behavior in several storage conditions. The kinetic parameters for thermal decomposition of hydrazine in oxygen and nitrogen atmospheres were determined by Capela–Ribeiro nonlinear isoconversional method. From TG data at heating rates of 5, 10, and 20 °C min?1, kinetic parameters could be determined in nitrogen (E = 47.3 ± 3.1 kJ mol?1, lnA = 14.2 ± 0.9 and T b = 69 °C) and oxygen (E = 64.9 ± 8.6 kJ mol?1, lnA = 20.7 ± 3.1 and T b = 75 °C) atmospheres. It was not possible to identify a specific kinetic model for hydrazine thermal decomposition due to high heterogeneity in reaction; however, experimental f(α)g(α) master-plot curves were closed to F 1/3 model.  相似文献   

9.
A sensitive and selective liquid chromatographic method coupled with tandem mass spectrometry was established and validated for the determination and pharmacokinetic study of clozapine in human plasma. Ethyl acetate extraction was used for plasma sample preparation with mirtazapine as internal standard. Chromatographic separation was achieved on a Hanbon Kromasil C18 (250 mm × 4.6 mm, 5 μm) column by isocratic elution with a mixture of 70 volumes of methanol and 30 volumes of water containing 0.2% ammonium acetate and 0.1% formic acid as mobile phase delivered at 1.0 mL min?1. The MS-MS detection was carried out on a tandem mass spectrometer using positive electrospray ionization and multiple reaction monitoring with argon for collision-induced dissociation. The ion transitions were monitored as follows: m/z 327 to m/z 270 for clozapine and m/z 266 to m/z 195 for the internal standard (mirtazapine), respectively. Calibration curves were generated over the concentration range from 0.10 to 200 ng mL?1 with the lower limit of quantification of 0.10 ng mL?1, and two segments of linear calibration curves were established by regressing in the way of least-square in the range from 0.10 to 5.0 and 5.0 to 200 ng mL?1, respectively. The intra- and inter-day precision and accuracy were determined at three different concentration levels, 0.20, 10.0 and 100 ng mL?1, and were all better than 15% (n = 5). This specific and sensitive liquid chromatography coupled with tandem mass spectrometry has been successfully applied to a pharmacokinetic study of clozapine after a single oral dose of 25 mg in healthy Chinese volunteers.  相似文献   

10.
Giomers represent a new concept in restorative dentistry, based on novel pre-reacted glass technology, where special glass-ionomer fillers are included in the resin matrix. A series of resin matrices based on 2,2-bis(2-hydroxy-3-methacryloxypropyl), bis-GMA (phenylpropane), and 1,6-bis(methacryloxy-2-ethoxy-carbonyl-amino)—UDMA (2,4,4-trimethylhexane) as base monomers and triethyleneglycol dimethacrylate (TEGDMA)/2-hydroxyethyl methacrylate (HEMA) as diluting monomers, have been prepared and investigated together with commercial Beautifil II giomer and three adhesives (one commercial and two experimental). The photopyroelectric (PPE) calorimetry in both front and back (BPPE) detection configurations was applied to measure the dynamic thermal parameters of the investigated materials. The BPPE configuration, together with the frequency scanning procedure, was used to directly measure the thermal diffusivity of the primer and the bounding materials, as well as the UDMA/HEMA and TEGDMA/bis-GMA mixtures. The results indicate that the values of the thermal parameters of the materials prepared in our laboratory (6.95 × 10?8 m2 s?1 < α < 12.93 × 10?8 m2 s?1) are close to those of the corresponding commercial materials (11.63 × 10?8 m2 s?1 < α < 12.01 × 10?8 m2 s?1). For the commercially available giomer (Beautifil II), the values of the thermal diffusivity (α = 8.19 × 10?8 m2 s?1) and effusivity (e = 960 W s1/2 m?2 K?1) indicate a good thermal biocompatibility of the material.  相似文献   

11.
A novel labeling reagent 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) coupling to liquid chromatography with electrospray ionization mass spectrometry for the detection of carbohydrates from the derivatized rape bee pollen samples is reported. Carbohydrates are derivatized to their bis-NMP-labeled derivatives. Derivatives showed an intense protonated molecular ion at m/z [M+H]+ in positive-ion detection mode. The mass-to-charge ratios of characteristic fragment ions at m/z 473.0 could be used for the accurately qualitative analysis of carbohydrates. This characteristic fragment ion is from the cleavage of C2–C3 bond in carbohydrate chain giving the specific fragment ions at m/z [MH-C m H2m+1O m -H2O]+ for pentose, hexose and glyceraldehydes and at m/z [MH-C m H2m-1O m+1-H2O]+ for alduronic acids such as galacturonic acid and glucuronic acid (m = n ? 2, n is carbon number of carbohydrate). No interferences for all aliphatic and aromatic aldehydes presented in natural environmental samples were observed due to the highly specific parent mass-to-charge ratio and the characteristic fragment ions. The method, in conjunction with a gradient elution, offered a baseline resolution of carbohydrate derivatives on a reversed-phase Hypersil ODS-2 column. The carbohydrates such as mannose, galacturonic acid, glucuronic acid, rhamnose, glucose, galactose, xylose, arabinose and fucose can successfully be detected.  相似文献   

12.
This paper reports an investigation regarding the influence of the cation M(II) (M = Zn, Ni, Mg) on the formation of MCr2O4 by thermal decomposition of the corresponding M(II),Cr(III)-carboxylates (precursors) obtained by redox reaction between the corresponding metal nitrates and 1,3-propanediol. The decomposition products at different temperatures have been characterized by FT-IR spectroscopy and thermal analysis. Thus, we have evidenced that by thermal decomposition of the studied precursors in the range 250–300 °C, different amorphous oxidic phases mixtures form depending on the nature of metalic cation: (Cr2O3+x + ZnO) (Cr2O3+x + Ni/NiO) and (Cr2O3+x+MgO). In case of M = Zn, around 400 °C when the transition Cr2O3+x to Cr2O3 takes place, zinc chromite nuclei form by the interaction ZnO with Cr2O3. In case of M = Ni, due to the partial reduction of Ni(II) at Ni(0) during the thermal decomposition of the precursor the formation of nickel chromite by the reaction NiO + Cr2O3 is shifted toward 500 °C, when Ni is oxidized at NiO. The thermal evolution of the mixture (MgO + CrO3) is different due to the formation as intermediary phase of MgCrO4, which decomposes to MgCr2O4 around 560 °C. In order to investigate the chromites formation mechanism, we have studied the mechanical mixtures of single oxides obtained from the corresponding carboxylates. These mixtures (MO + Cr2O3) have been annealed at 400, 500, and 600 °C to study the evolution of the crystalline phases. It results in the prepared mixture behaving different from the mixtures obtained by thermal decomposition of the binary M(II),Cr(III)-carboxylates, recommending our synthesis method for obtaining binary oxides.  相似文献   

13.
New zinc(II) 4-hydroxybenzoate complex compounds with general formula [Zn(4-OHbenz)2LnxH2O, where 4-OHbenz = 4-hydroxybenzoate; L = isonicotinamide, N-methylnicotinamide, N,N-diethylnicotinamide, thiourea, urea, phenazone, theophylline, methyl-3-pyridylcarbamate; n = 2, 3; x = 0–3, 5, were synthesized and characterised by elemental analysis, thermal analysis and IR spectroscopy. The thermal behaviour of the prepared compounds was studied by TG/DTG and DTA methods in argon atmosphere. The thermal decomposition of hydrated compounds started with dehydration. During the thermal decomposition, organic ligand, carbon monoxide, carbon dioxide and phenol were evolved. The final solid product of the thermal decomposition was zinc or zinc oxide. The volatile gaseous product, solid intermediate products and the final product of thermal decomposition were identified by IR spectroscopy, mass spectrometry, qualitative chemical analyses and X-ray powder diffraction method. The antimicrobial activity of zinc(II) carboxylate compounds was tested against various strains of bacteria, yeasts and filamentous fungi (S. aureus, E. coli, C. parapsilosis, R. oryzae, A. alternata, M. gypseum). The presence of zinc in complexes led to the increase in their antimicrobial activity in comparison with free 4-hydroxybenzoic acid.  相似文献   

14.
The high nitrogen compound 3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine and the high energy density material hexanitrohexaazaisowurtzitane (HNIW), were used as substitute of hexogen (RDX) in the composite modified double base (CMDB) propellant formulations, the propellant samples were prepared, the thermal behaviors, nonisothermal reaction kinetics, and thermal safety were carried out, and the eight important parameters were calculated and obtained as the self-accelerating decomposition temperature (T SADT), thermal ignition temperature (T TIT), critical temperatures of thermal explosion (T b), critical temperature of hot-spot initiation (T cr,hot-spot), characteristic drop height of impact sensitivity (H 50), critical thermal explosion ambient temperature (T acr), safety degree (S d), and thermal explosion probability (P TE). It shows that the content of HNIW has a large effect on the decomposition reaction mechanism of the CMDB propellant, when the content of HNIW is 10 %, the decomposition reaction are controlled by the random nucleation and subsequent growth (n = l), and the reaction mechanism obeys Mampel law; but when the content of HNIW is 20 %, the decomposition reaction are controlled by the chemical reaction (n = 1/4). The mechanism can not be changed by the catalysts, and they just make the apparent activation energy change slightly. For the sample, from BC01 to BC04, the values of T SADT and T TIT making an upward tendency, show the resistivity to heat: BC04 > BC03 > BC02 > BC01; the values of T acr and S d, BC01 are the maximum and BC02 are the minimum, show the heat sensitivity: BC01 > BC03 > BC04 > BC02. For the same radius, the thermal safety of the sphere sample is greater than that of the infinite cylinder one.  相似文献   

15.
New complexes ML(CNS)·nH2O [M = Ni, n = 0.5; M = Cu, n = 4.5; M = Zn, n = 0.5, HL: 6-mercapto-(1,4,8,11-tetraazaundecanyl)-6-carboxylic acid)] have been synthesised, chemical analysed, and characterised by different spectroscopic techniques (IR, UV–Vis–NIR, 1H NMR, EPR, ESI–MS), and magnetic measurements. Based on the IR spectra a dinuclear structure with the 1,3-CSN coordination was proposed for Ni(II) and Cu(II) complexes. The dinuclear structure of Cu(II) complex is also consistent with both magnetic behaviour and EPR spectrum. According to TG, DTG and DTA curves the thermal transformations are complex processes, including dehydration, Mannich base oxidative degradation and thiocyanate decomposition. The final product of decomposition is the most stable metallic oxide, as XRD data indicates. The new complexes were also screened for their microbicidal and antibiofilm properties.  相似文献   

16.
Thermal behaviour of hexaamminenickel(II) nitrate and tris(ethylenediamine)nickel(II) nitrate have been investigated by means of simultaneous thermogravimetry/DTA coupled online with mass spectral (MS) studies and temperature resolved X-ray diffraction (TR-XRD) techniques under inert atmospheric condition. Both the complexes produce highly exothermic reactions during heating due to the oxidation of the evolved ammonia or ethylenediamine by the decomposition products of Ni(NO3)2. Evolved gas analysis by MS studies detected fragments like NH2 and NH ions with weak intensity. The decomposition of nitrate group generates N, N2, NO, O2 and N2O species. Ethylenediamine (m/z 60) is fragmented to H2 (m/z 2), N (m/z 14), NH3 (m/z 17) and CH2=CH2/N2 (m/z 28) species. The formation of the intermediates was monitored by in situ TR-XRD. The residue of thermal decomposition for both the complexes was found to be crystalline NiO in the nano range.  相似文献   

17.
New semi-organic bis(thiourea)silver(I)nitrate (TuAgN) single crystals have been grown from slow evaporation solution growth technique. Single crystal X-ray diffraction study reveals that the crystal belongs to orthorhombic system with the non-centrosymmetric space group C2221 and the calculated cell parameters are a = 33.3455 (6) Å, b = 45.2957 (7) Å, c = 20.3209 (5) Å, α = β = γ = 90°, and V = 30692.8 (10) Å 3. The thermal stability and decomposition behavior of TuAgN compound have been studied by thermogravimetric analysis at three different heating rates 5, 10, and 15 °C min?1. The effective activation energy (E a) and pre-exponential factor (ln A) of thermal decomposition of thiourea from TuAgN compound at three different heating rates are estimated by model free methods: Arrhenius, Flynn–Wall, Kissinger, and Kim–Park. The calculated effective activation energies were found to vary with the fraction (α) reacted. The compensation effect between the (ln A) and (E a) has also been studied. Dielectric properties of TuAgN crystal have been studied in a wide range of frequencies and temperatures. AC conductivity has also been carried out.  相似文献   

18.
1,3-Bis(4-aminophenoxy)benzene (TPER) and poly(amic acid) based on TPER and pyromellitic dianhydride (PMDA) were synthesized. After imidization of the poly(amic acid), polyimide based on TPER and PMDA was obtained. The melting process and the specific heat capacity (C p) of TPER were examined by DSC and microcalorimetry, respectively. The melting enthalpy, the melting entropy, and the C p for TPER were obtained. The enthalpy change, the entropy change, and the Gibbs free energy change for TPER were obtained within 283 and 353 K. The thermal decomposition reaction mechanism of the polyimide is classified from the TG–DTG experimental data, and the thermokinetic parameters of the thermal decomposition reaction are E a = 296.87 kJ mol?1and log (A/s?1) = 14.41.  相似文献   

19.
Pindone is a highly effective anticoagulant rodenticide. In this paper, an improved assay for the analysis and confirmation of pindone in human plasma has been proposed. After the samples protein precipitation with 10% (v/v) methanol in acetonitrile and cleaning with solid-phase extraction, the separation was carried out on an IonPac AS11-HC analytical column (250 mm × 2 mm) using 20 mmol L?1 KOH containing 10% (v/v) methanol as organic modifier by eluent generator reagent free ion chromatography. Quantification was performed by a negative electrospray ionization ion trap mass spectrometry using diphacinone as an internal standard. The transition for quantitative analysis was m/z 229 → 172, and for qualitative analysis were m/z 229 → 145 and m/z 229 → 214 for pindone. The transition for quantitative analysis was m/z 339 → 167 for IS. The limit of detection, the limit of quantification, recovery, linearity, precision, and stability were well validated. The cracking approach of characteristic fragments for pindone and IS were proposed. It was confirmed that this method could be used in clinical diagnosis and forensic toxicology analysis.  相似文献   

20.
Kinetics of two successive thermal decomposition reaction steps of cationic ion exchange resins and oxidation of the first thermal decomposition residue were investigated using a non-isothermal thermogravimetric analysis. Reaction mechanisms and kinetic parameters for three different reaction steps, which were identified from a FTIR gas analysis, were established from an analysis of TG analysis data using an isoconversional method and a master-plot method. Primary thermal dissociation of SO3H+ from divinylbenzene copolymer was well described by an Avrami–Erofeev type reaction (n = 2, g(α) = [?ln(1 ? α)]1/2]), and its activation energy was determined to be 46.8 ± 2.8 kJ mol?1. Thermal decomposition of remaining polymeric materials at temperatures above 400 °C was described by one-dimensional diffusion (g(α) = α 2), and its activation energy was determined to be 49.1 ± 3.1 kJ mol?1. The oxidation of remaining polymeric materials after thermal dissociation of SO3H+ was described by a phase boundary reaction (contracting volume, g(α) = 1?(1 ? α)1/3). The activation energy and the order of oxygen power dependency were determined to be 101.3 ± 13.4 and 1.05 ± 0.17 kJ mol?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号