首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The continuous spectrum in the problem of resonance optical transitions between bound states of quantum wells is taken into account by the method of equivalence transformation of the initial Hamiltonian. The effective Hamiltonian of resonance interaction, describing the decay of levels to a continuous spectrum, is obtained. The formulas obtained are applied to the problem of resonance electron transfer between quantum dots. The conditions for effective resonance electron transfer are determined.  相似文献   

2.
The effect of localized spins on the quantum coherence in solids is discussed. A quantum dot with an odd number of electrons can be a model system for a localized spin. It is experimentally shown that a spin flip scattering by a quantum dot pulls the trigger of quantum decoherence. On the other hand, spin flip scattering is the basic process to construct the Kondo singlet state around a magnetic impurity. Through an interference effect of the Kondo state (the Fano–Kondo effect) in a side-coupled dot system, we show experimentally that the Kondo singlet state is quantum mechanically coherent. The analysis of the Fano–Kondo lineshape indicates the locking of the phase shift to π/2, which is in agreement with theoretical predictions. The Fano–Kondo effect is also observed in an Aharonov–Bohm ring, in which a quantum dot is embedded, and also indicates the phase shift locking to π/2.  相似文献   

3.
We measure the dynamics of nuclear spins in a single-electron charged self-assembled InGaAs quantum dot with negligible nuclear spin diffusion due to dipole-dipole interaction and identify two distinct mechanisms responsible for the decay of the Overhauser field. We attribute a temperature-independent decay lasting ~100 sec at 5 T to intradot diffusion induced by hyperfine-mediated indirect nuclear spin interaction. By repeated polarization of the nuclear spins, this diffusion induced partial decay can be suppressed. We also observe a gate voltage and temperature-dependent decay stemming from cotunneling mediated nuclear spin flips that can be prolonged to ~30 h by adjusting the gate voltage and lowering the temperature to ~200 mK. Our measurements indicate possibilities for exploring quantum dynamics of the central spin model.  相似文献   

4.
We demonstrate theoretically that it is possible to manipulate electron or hole spins all optically in semiconducting carbon nanotubes. The scheme that we propose is based on the spin-orbit interaction that was recently measured experimentally; we show that this interaction, together with an external magnetic field, can be used to achieve optical electron-spin state preparation with a fidelity exceeding 99%. Our results also imply that it is possible to implement coherent spin rotation and measurement using laser fields linearly polarized along the nanotube axis, as well as to convert spin qubits into time-bin photonic qubits. We expect that our findings will open up new avenues for exploring spin physics in one-dimensional systems.  相似文献   

5.
6.
We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.  相似文献   

7.
Optical spectroscopy including photoluminescence, electroluminescence, photocurrent, and differential absorption, have been investigated for the triple-layer InGaAs vertically coupled quantum dots (VCQDs) by adding modulation doping (MD) in the 5 nm GaAs spacer layers. In addition to the QDs fundamental and excited transitions, a coupled-state transition is observed for the VCQDs. For the VCQDs of p-type MD, the optical transitions at ground state and coupled state are enhanced by the improvement of hole capture for the valence subbands. For the VCQDs of n-type MD, the main absorption change occurs at the coupled state, consistent with the dominant emission peak observed in EL spectra.  相似文献   

8.
The dynamics of two electrons in a 2-dimensional quantum dot molecule in the presence of a time-dependent electromagnetic field is calculated from first principles. We show that carefully selected microwave pulses can exclusively populate a single state of the first excitation band and that the transition time can be further decreased by optimal pulse control. Finally we demonstrate that an oscillating charge localized state may be created by multiple transitions using a sequence of pulses.  相似文献   

9.
We present a theory of interaction of magnetic Mn ions depending strongly on the number (Ne) of electrons in a quantum dot. For closed electronic shells, we derive the RKKY interaction and its dependence on magnetic ion positions, quantum dot energy quantization omega0, and the number of filled shells Ns. For partially filled shells, the many-electron magnetopolaron effect leads to effective carrier mediated ferromagnetic Mn-Mn interactions. The dependence of the magnetopolaron energy on magnetic ion positions, quantum dot energy quantization omega0, and the number of electrons Ne is predicted.  相似文献   

10.
We address the precession of an ensemble of electron spins, each confined in a (In, Ga)As/GaAs self-assembled quantum dot. The quantum dot inhomogeneity is directly reflected in the precession of the optically oriented electron spins about an external magnetic field, which is subject to fast dephasing on a nanoseconds time scale. Proper periodic laser excitation allows synchronization of the electron spin precessions with the excitation cycle. The experimental conditions can be tailored such that eventually all (about a million) electron spins that are excited by the laser precess with a single frequency. In this regime the ensemble can be exploited during the single electron spin coherence times being in the microseconds range.  相似文献   

11.
12.
采用自组装方法生长了一种新型的InGaAs量子点/InAlAs浸润层结构.通过选取合适的In组分 ,使InAlAs浸润层的能级与GaAs势垒相当,从而使浸润层的量子阱特征消失.通过低温光致 发光(PL)谱的测试分析得到InGaAs量子点/InAlAs浸润层在样品中的确切位置.变温PL谱的 研究显示,具有这种结构的量子点发光峰的半高全宽随温度上升出现展宽,这明显区别于普 通InGaAs量子点半高全宽变窄的行为.这是因为采用了InAlAs浸润层后,不仅增强了对InGaA s量子点的限制作用,同时切断了载流子的 关键词: InGaAs量子点 InAlAs浸润层 PL谱  相似文献   

13.
14.
The symmetry properties of transport beyond the linear regime in chaotic quantum dots are investigated experimentally. A component of differential conductance that is antisymmetric in both applied source-drain bias V and magnetic field B, absent in linear transport, is found to exhibit mesoscopic fluctuations around a zero average. Typical values of this component allow a measurement of the electron interaction strength.  相似文献   

15.
A four-pulse version of the pulse double electron-electron resonance (DEER) experiment is presented, which is designed for the determination of interradical distances on a nanoscopic length-scale. With the new pulse sequence electron-electron couplings can be studied without dead-time artifacts, so that even broad distributions of electron-electron distances can be characterized. A version of the experiment that uses a pulse train in the detection period exhibits improved signal-to-noise ratio. Tests on two nitroxide biradicals with known length indicate that the accessible range of distances extends from about 1.5 to 8 nm. The four-pulse DEER spectra of an ionic spin probe in an ionomer exhibit features due to probe molecules situated both on the same and on different ion clusters. The former feature provides information on the cluster size and is inaccessible with previous methods.  相似文献   

16.
We measure a dephasing time of several hundred picoseconds at low temperature in the ground-state transition of strongly confined InGaAs quantum dots, using a highly sensitive four-wave mixing technique. Between 7 and 100 K the polarization decay has two distinct components resulting in a non-Lorentzian line shape with a lifetime-limited zero-phonon line and a broadband from elastic exciton-acoustic phonon interactions.  相似文献   

17.
18.
Electron transfer between bound states of remote quantum dots driven by an off-resonant electromagnetic pulse is analyzed. In the case of nearly equal energies of the states, a two-photon transfer mechanism related to the high-frequency off-resonant Stark effect is proposed. An equivalent transformation is used to derive an effective Hamiltonian that provides a basis for correct treatment of continuum (conduction-band) states. It is shown that optimal conditions for electron transfer correspond to quasi-resonant excitation of states near the lower edge of the continuum. The characteristics of the process are evaluated.  相似文献   

19.
Mechanisms of electron spin relaxation in semiconductor arrays with tunnel-coupled quantum dots are reviewed. The contribution for anisotropic exchange interaction is shown for asymmetrical quantum dots having no inversion axis relative to their plane. The configuration of vertically coupled double Ge/Si quantum dots is found where anisotropic exchange coupling does not contribute to spin decoherence. It could be a basic configuration of spin-based quantum computation schemes.  相似文献   

20.
We measure the dephasing time of the exciton ground state transition in InGaAs quantum dots (QD) and quantum dot molecules (QDM) using a sensitive four-wave mixing technique. In the QDs we find experimental evidence that the dephasing time is given only by the radiative lifetime at low temperatures. We demonstrate the tunability of the radiatively limited dephasing time from 400 ps up to 2 ns in a series of annealed QDs with increasing energy separation of 69–330 meV from the wetting layer continuum. Furthermore, the distribution of the fine-structure splitting δ1 and of the biexciton binding energy δB is measured. δ1 decreases from 96 to with increasing annealing temperature, indicating an improving circular symmetry of the in-plane confinement potential. The biexciton binding energy shows only a weak dependence on the confinement energy, which we attribute to a compensation between decreasing confinement and decreasing separation of electron and hole. In the QDM we measured the exciton dephasing as function of interdot barrier thickness in the temperature range from 5 to 60 K. At 5 K dephasing times of several hundred picoseconds are found. Moreover, a systematic dependence of the dephasing dynamics on the barrier thickness is observed, showing how the quantum mechanical coupling in the molecules affects the exciton lifetime and acoustic-phonon interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号