首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In NaZn13-type LaFe11.4Al1.6C0.02 compound, a signature of weak ferromagnetism is observed at ∼100 K under a low field by ac magnetic-susceptibility and electrical-resistivity measurements, implying the coexistence of ferromagnetic (FM) and antiferromagnetic (AFM) phases. The hysteresis in isofield magnetization curves and large magnetic relaxation demonstrate the metastability of the magnetic state in the AFM-FM transition region. The variations of magnetization with temperature, time and field show distinct step-like behaviors, which is probably attributed to the discontinuous growth of ferromagnetic cluster in antiferromagnetic matrix.  相似文献   

2.
The LaFe11.5Si1.5H1.3 interstitial compound has been prepared. Its Curie temperature TC (288 K) has been adjusted to around room temperature, and the maximal magnetic entropy change (|ΔS|~17.0 J·kg-1·K-1 at TC) is larger than that of Gd (|ΔS|~9.8 J·kg-1·K-1 at TC=293 K) by ~73.5% under a magnetic change from 0 to 5 T. The origin of the large magnetic entropy change is attributed to the first-order field-induced itinerant-electron metamagnetic transition. Moreover, the magnetic hysteresis of LaFe11.5Si1.5H1.3 under the increase and decrease of the field is very small, which is favourable to magnetic refrigeration application. The present study suggests that the LaFe11.5Si1.5H1.3 compound is a promising candidate as a room-temperature magnetic refrigerant.  相似文献   

3.
Very large magnetic entropy change Δ SM, which originates from a fully reversible second-order transition at Curie temperature TC, has been discovered in compounds La(Fe, Si)13, La(Fe, Al)13 and those with Co doping. The maximum change ΔSM\approx19 J·kg-1·K-1, achieved in LaFe11.4Si1.6 at 209K upon a 5T magnetic field change, exceeds that of Gd by more than a factor of 2. The TC of the Co-doped compounds shifts to higher temperatures. ΔSM still has a considerable large magnitude near room temperature. The phenomena of very large ΔSM, convenience of adjustment of TC, and also thesuperiority of low cost, strongly suggest that the compounds La(Fe, M)13 (M=Si, Al) with Co doping are suitable candidates for magnetic refrigerants at high temperatures.  相似文献   

4.
In this paper the effects of Fe-Fe bond length change on magnetic properties and magnetic entropy change have been investigated on LaFe_{12.4-x}Si_xCo_{0.6} and LaFe_{12.3-x}Al_xCo_{0.7} intermetallic compounds. According to the analyses of Fe-Fe bond length change, the variation of Curie temperature and the unusual magnetic phase transition which results in the large magnetic entropy change were explained. The effects of the substitution of Co and Si for Fe on magnetic entropy change and field-induced itinerant-electron metamagnetic transition in LaFe_{12.4-x}Si_xCo_{0.6} compounds were also studied and the considerable magnetic entropy change has been achieved.  相似文献   

5.
陈怡  申江 《物理学报》2009,58(13):141-S145
利用Chen-Mbius晶格反演获得的原子间相互作用势,对NaZn13型Fe基金属间化合物进行原子级模拟研究.计算结果表明,Si原子和Co原子均优先占据96i晶位,Si原子和Co原子替代Fe原子后晶体平均结合能降低.随着Co含量的增加,LaFe13-x-yCoySix和NdFe13-x-yCoySix的晶格参数逐渐降低.声子态密度中,稀土原子主要激发低频模,Si原子主要激发高频模.LaFe11.5-yCoySi1.5化合物的德拜温度随Co含量的增加而增高. 关键词: 晶格反演 原子间相互作用势 热力学性质 磁致冷材料  相似文献   

6.
The unit cell volume and phase transition temperature of LaFe11.4Al1.6Cx compounds have been studied. The magnetic entropy change, refrigerant capacity and the type of magnetic phase transition are investigated in detail for LaFe11.4Al1.6Cx with x=0.1, All the LaFe11.4Al1.6Cx (x=0-0.8) compounds have the cubic NaZn13-type structure. The addition of carbon atoms brings about a considerable increase in the lattice parameter. The bulk expansion results in the change of phase transition temperature (Tc), Tc increases from 187K to 269 K with x varying from 0.1 to 0.8, Meanwhile an increase in the lattice parameter can also cause a change of the magnetic ground state from antiferromagnetic to ferromagnetic. Large magnetic entropy change IASI is found over a large temperature range around Tc and the refrigerant capacity is about 322J/kg for LaFe11.4Al1.6C0.1. The magnetic phase transition belongs in weakly first-order one for x=0.1.  相似文献   

7.
Magnetism and magnetic entropy changes in LaFe11A12Cx(x=0.0, 0.2 and 0.5) compounds have been investigated.The Curie temperature TC is conveniently controlled from 200K to room temperature by varying the carbon concentration.Large magnetic entropy change is obtained over a wide temperature range due to the high magnetization and the drastic decrease in the magnetization around TC.The large magnetic entropy change in wide temperature range,low cost and the convenience of controlling TC suggest that the LaFe11Al2Cx compounds are promising candidates for magnetic refrigerants in the corresponding temperature range.  相似文献   

8.
研究了NaZn13型结构LaFe13-xAlxC0.1(x=1.6,1.8)间隙化合物的磁制冷能力和磁相变.利用麦克斯韦关系式计算得到,高Al含量LaFe13-xAlx碳化物的最大磁熵变值|ΔS|m低于低Al含量碳化物的最大磁熵变值.随Al含量的增加,化合物的磁熵变峰展宽,但由于磁熵变大幅降低,衡量磁制冷能力的q值随之降低.基于朗道相变原理,考虑到自旋涨落的影响,磁自由能可以展开到磁化强度的6次方项,材料的相变类型由磁化强度的4次方项系数a3(T)的符号来进行判断.随着Al含量的增加,研究的碳化物相变由弱的一级相变转为二级相变. 关键词: 13-xAlx碳化物')" href="#">LaFe13-xAlx碳化物 磁制冷能力 磁相变  相似文献   

9.
沈俊  李养贤  王芳  王光军  张绍英 《中国物理》2004,13(7):1134-1138
Effect of Co substitution on magnetic properties and magnetic entropy changes in LaFe_{11.83}Si_{0.94}Al_{0.23} compounds has been investigated by means of magnetization measurements. X-ray diffraction shows the prepared compounds to be single phase with the cubic NaZn_{13}-type structure. Substitution of Co for Fe leads to an increase of Curie temperature of the material. The magnetic entropy changes in LaFe_{11.83}Si_{0.94}Al_{0.23} and LaFe_{11.03}Co_{0.80}Si_{0.94}Al_{0.23} compounds are 21.8J/(kg·K) to 16.9J/(kg·K) under a magnetic field change of 0-5T at Curie temperature, respectively. Giant magnetic entropy changes are attributed to the higher magnetization and the rapid change in magnetization at Curie temperature.  相似文献   

10.
The GdFeO3-type lattice distortion and consequent ferroelectric behavior in polycrystalline DyMnO3 with different grain sizes are studied by means of the Rietveld refinement of the X-ray diffraction at room temperature and ferroelectric measurements at low temperature. As evidenced by the variation in the in-plane MnOMn bond angle and the ferroelectric polarization, the distorted crystal structure and ferroelectric behavior of DyMnO3 can be effectively modulated by varying grain size. This work sheds light on the size effect in type-II multiferroic manganites.  相似文献   

11.
LaFe11.2Co0.7Si1.1合金在室温区的巨大磁熵变   总被引:16,自引:0,他引:16  
在具有立方NaZn13型结构的稀土铁基化合物LaFe11.2Co0.7Si1.1中发现室温的巨大磁熵变,磁熵变的峰值位于居里温度Tc=274K处,5T外磁场下达到-20.3J/kg K约为相同的温区下金属Gd的2倍,LaFe11.2Co0.7Si1.1合金中强烈的磁弹性耦合,导致晶格在居里温度处出现巨大负膨胀,这是其巨大磁熵变的来源。  相似文献   

12.
沈保根  胡凤霞  董巧燕  孙继荣 《中国物理 B》2013,22(1):17502-017502
In this article,our recent progress concerning the effects of atomic substitution,magnetic field,and temperature on the magnetic and magnetocaloric properties of the LaFe13-xAlx compounds are reviewed.With an increase of the aluminum content,the compounds exhibit successively an antiferromagnetic(AFM) state,a ferromagnetic(FM) state,and a mictomagnetic state.Furthermore,the AFM coupling of LaFe 13-xAlx can be converted to an FM one by substituting Si for Al,Co for Fe,and magnetic rare-earth R for La,or introducing interstitial C or H atoms.However,low doping levels lead to FM clusters embedded in an AFM matrix,and the resultant compounds can undergo,under appropriate applied fields,first an AFM-FM and then an FM-AFM phase transition while heated,with significant magnetic relaxation in the vicinity of the transition temperature.The Curie temperature of LaFe13-xAlx can be shifted to room temperature by choosing appropriate contents of Co,C,or H,and a strong magnetocaloric effect can be obtained around the transition temperature.For example,for the LaFe 11.5Al1.5C0.2H1.0 compound,the maximal entropy change reaches 13.8 J·kg-1 ·K-1 for a field change of 0-5 T,occurring around room temperature.It is 42% higher than that of Gd,and therefore,this compound is a promising room-temperature magnetic refrigerant.  相似文献   

13.
Magnetic properties and magnetic entropy change in La(Fe_{1-x}Mn_x)_{11.7}Si_{1.3}H_y compounds have been investigated. A significant increase of the Curie temperature T_C and a small increase of the saturation magnetizations μ_S have been observed after the introduction of interstitial H, which caused a slight volume expansion. The first-order field-induced itinerant-electron metamagnetic (IEM) transition remains and brings about a large magnetic entropy change around room temperatures for the compounds. The maximal magnetic entropy change is about 23.4, 17.7 and 15.9J/kg·K under a magnetic field change from 0 to 5T for x=0.01, 0.02 and 0.03, respectively. Therefore, the compounds appear to be potential candidates for magnetic refrigerants around room temperatures.  相似文献   

14.
15.
The high-temperature oxidation resistance and magnetic properties of Si-doped Sm2Co17-type magnets at 500 °C were systematically investigated. The Sm(Co0.76, Fe0.1, Cu0.1, Zr0.04)7Six (x=0–0.6) magnets were prepared by the conventional powder metallurgical technique. It is found that the addition of silicon in the Sm2Co17-type magnet can remarkably improve its oxidation resistance. Moreover, a small amount of silicon addition can also increase its high-temperature intrinsic coercivity. A maximum intrinsic coercivity of 6.7 kOe at 500 °C was obtained for the Sm2Co17-type magnet with Si content x=0.4, whose high-temperature maximum energy product loss was about 2.5 times smaller than pure Sm2Co17-type magnet after oxidation at 500 °C for 100 h, indicating the enhanced oxidation resistance. Its corresponding Curie temperature and saturation magnetization are about 723.9 °C and 7.4 kG, respectively.  相似文献   

16.
The magnetic properties and the magnetic entropy change AS have been investigated for Gd6Co1.67Si3 compounds with a second-order phase transition. The saturation moment at 5 K and the Curie temperature TC are 38.1μB and 298 K, respectively. The AS originates from a reversible second-order magnetic transition around TC and its value reaches 5.2 J/kg.K for a magnetic field change from 0 to 5T. The refrigerant capacity (RC) of Gd6Co1.67Si3 are calculated by using the methods given in Refs.[12] and [21], respectively, for a field change of 0 5T and its values are 310 and 440 J/kg, which is larger than those of some magnetocaloric materials with a first-order phase transition.  相似文献   

17.
Effects of Nd-doping on the magnetic properties and magnetocaloric effects (MCEs) of NdxLa1-xFe11.5Al1.5 have been investigated. Substitution of Nd leads to a weakening of the antiferromagnetic (AFM) coupling and an enhancement of the ferromagnetic (FM) coupling. This in turn results in a complex magnetic behaviour for Nd0.2La0.8Fe11.5Al1.5 characterized by the occurrence of two phase transitions at ~188 K (PM AFM) and ~159 K (AFM-FM). As a result, a table-like MCE (9 J/kg.K) is found in a wide temperature range (160-185 K) for a field change of 0-5T around the transition temperature, as evidenced by both the magnetic and calorimetric measurements. Based on the analysis of low-temperature heat capacity, it is found that the AFM-FM phase transition modifies the electron density significantly, and the major contribution to the entropy change comes from the electronic entropy change.  相似文献   

18.
刘大勇  陈东猛  邹良剑 《中国物理 B》2009,18(10):4497-4505
Lattice, magnetic and orbital structures in KCuF3 are self-consistently determined by our cluster self-consistent field approach based on a spin-orbital-lattice Hamiltonian. Two stable structures are obtained and found to be degenerate, which confirms the presence of the coexistent phases observed experimentally. We clearly show that due to the inherent frustration, the ground state of the system only with the superexchange interaction is degenerate; while the Jahn-Teller distortion, especially the anharmonic effect, stabilizes the orbital ordered phase at about 23% in the x2-y2 orbit and at 77% in the 3z2-r2 orbit. Meanwhile the magnetic moment of Cu is considerably reduced to 0.56μB, and magnetic coupling strengths are highly anisotropic, Jz/Jxy ≈ 18. These results are in good agreement with the experiments, implying that the anharmonic Jahn-Teller effect plays an essential role in stabilising the orbital ordered ground state of KCuF3.  相似文献   

19.
Making the most of the magnetic and lattice entropy changes   总被引:1,自引:0,他引:1  
Recent discoveries of novel materials exhibiting a magnetocaloric effect that is strongly enhanced by the magnetoelastic coupling—the so-called giant magnetocaloric effect materials—stimulated an unprecedented expansion of research related both to the fundamentals of the phenomenon and potential future applications of these materials in continuous magnetic cooling near room temperature. The subject of this work is twofold. On one hand, systems exhibiting the giant magnetocaloric effect may be prone to hysteresis, and may exist in nonequilibrium, phase-separated states, thus requiring a special care when their intrinsic physical properties are of interest. On the other hand, in order to harvest most of the magnetocaloric potential of a specific compound, both the magnetic and lattice degrees of freedom of the material must be precisely controlled.  相似文献   

20.
沈俊  张虎  吴剑峰 《中国物理 B》2011,20(2):27501-027501
Magnetic entropy change (Δ SM) and refrigerant capacity (RC) of Ce6Ni2Si3-type Gd6Co1.67Si2.5Ge0.5 compounds have been investigated. The Gd6Co1.67Si2.5Ge0.5 undergoes a reversible second-order phase transition at the Curie temperature TC = 296 K. The high saturation magnetization leads to a large Δ SM and the maximal value of Δ SM is found to be 5.9 J/kg,cdot,K around TC for a field change of 0--5 T. A broad distribution of the Δ SM peak is observed and the full width at half maximum of the Δ SM peak is about 101 K under a magnetic field of 5 T. The large RC is found around TC and its value is 424 J/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号