共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein foam was explored as a foaming agent for enhanced oil recovery application in this study. The influence of salinity and oil presence on bulk stability and foamability of the egg white protein (EWP) foam was investigated. The results were compared with those of the classical surfactant sodium dodecyl sulfate (SDS) foam. The results showed that the EWP foam is more stable than the SDS foam in the presence of oil and different salts. Although, the SDS foam has more foamability than the EWP foam, however, at low to moderate salinities (1–3 wt% NaCl), both foam systems showed improvement in foamability. At a NaCl concentration of 4.0 wt% and above, foamability of the SDS foam started to decrease drastically while the foamability of the EWP foam remained the same. The presence of oil has a destabilizing effect on both foams but the EWP foam was less affected in comparison to the SDS foam. Moreover, increasing the aromatic hydrocarbon compound percentage in the added oil decreased the foamability and stability of the SDS foam more than EWP foams. This study suggests that the protein foam could be used as an alternative foaming agent for enhanced oil recovery application due to its high stability compared to the conventional foams. 相似文献
2.
Polymers (polyethylene, polyurethane), silica and modified silicas (modified with: N-2-aminoethyl-3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-merkaptopropyltrimethoxysilane, triethoxyoctylsilane) were examined by inverse gas chromatography at four different temperatures: 363, 383, 393 and 403 K. The modifiers of silica were applied at five different concentrations. Small amounts of the following test solutes were injected to achieve the infinite dilution conditions: pentane, hexane, heptane, octane, nonane, dichloromethane, chloroform, carbon tetrachloride, and 1,2-dichloroethane. The retention times for these test solutes were determined and Flory–Huggins parameters were calculated. Values of these physico-chemical parameters characterizing the examined materials were arranged in a matrix form: in the rows the supports and modifiers were enumerated at different temperatures whereas the columns contained the test solutes. The input matrix was subject to principal component analysis after standardization. Three principal components explain more than 93% of the total variance in the data. Four test solutes (hexane, heptane, chloroform and carbon tetrachloride) carry very similar information. Therefore, it is justified to eliminate any three of them from the series of test solutes. Modifiers, supports and various temperatures were classified and different groups were observed according to the dominant interactions. Type of modifier, its content, and temperature can change and shift the properties from the dominant clusters to the neighboring clusters. Unambiguous separation was observed in cases of silica modified with 5 and 10 parts of triethoxyoctylsilane at all examined temperatures. 相似文献
3.
An integrative approach based on the combined use of both experiments and modelling is discussed here aimed at investigating metal–polyelectrolyte interactions in solution. Electrochemical techniques are applied because of their potential to measure the actual speciation without disturbing the solution physico–chemical equilibrium. The experimental methodologies are complementary since the ranges of applicability depend on the solution composition itself. To complement and interpret the results of these experimental techniques, a physico–chemical association model, based on the so-called ‘chemical model’ of counterion condensation theory, is used. The model considers that, in addition to the usual electrostatic interactions and entropic effects, territorial affinity and chemical bonding interactions take place between the small counterions in solution and the polyelectrolyte. A number of particular cases of metal/polyelectrolyte systems are discussed aimed at showing that the integrative approach leads to additional information about the solution system which can not be deduced from experimental results solely. Future challenges with respect to the applications in the study of natural aquatic systems are pointed out. 相似文献
4.
Volatile organochlorine compounds in the Tiber and Marta rivers have been analyzed by liquid–liquid extraction and headspace gas chromatography. Several different halogenated compounds were identified, in particular chloroform, bromoform, trichloroethane, trichloroethene, and tetrachloroethene. The concentrations of the halocarbons varied between 0.05 and 4.5 μg L –1 with a relative standard deviation ≤4.0%. The highest concentrations were observed for chloroform, bromoform, and tetrachloroethene in the Marta and Tiber rivers. The results obtained by use of the two analytical methods were similar. 相似文献
6.
The effect of the temperature on the interaction between the components of an immiscible polystyrene–polyethylene blend has been analyzed with different techniques. Lap‐shear‐strength data and morphological observations indicate an enhanced interaction between the polymeric phases at elevated temperatures, at which dispersive forces are known to predominate. This raises the degree of compatibility of the polymeric components. Rheological measurements also justify the concept of increased adhesion between the components of the blend when it is processed at very high temperatures. Differential scanning calorimetry analysis lends support to an improved homogeneity of the blend at an elevated temperature; this is again consistent with an improved interaction between the blend phases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2545–2557, 2004 相似文献
7.
Substrate-mediated interactions between adatoms on III–V semiconductors are investigated by using the self-consistent Anderson–Newns model in the Hartree–Fock approximation. The Green function formalism of the Dyson equation approach is employed to derive Chebyshev polynomial expressions for the chemisorption energy, interaction energy, and charge transfer, in terms of the adatom separation d. An alternating s- and p-orbital model of GaSb and InAs enabled interacting hydrogen adatoms on their (100) and (111) faces to be studied. As in the metal–substrate case, the chemisorption energy decreased with increasing band widths and adbond energy and, additionally, with increasing band gap. The interaction energy was found to have a d−2 damping factor for the (100) faces and a d−3 factor for the (111) faces, its magnitude being larger for smaller gaps. Self-consistency is shown to play a significant role in interaction energy calculations for small values of d. In the case of charge transfer, its variation with d is purely a self-consistent result. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 67: 377–397, 1998. 相似文献
9.
A method for digestion of light and medium Iraqi crude oils (Basrah and Khanaken oils) using microwave‐induced combustion (MIC) in closed vessels is described for the determination of Hg, Au, Cu, Al, Ca, Co, K, Mg, Si and Sr by inductively coupled plasma optical emission spectrometry (ICP–OES) and Mo, Ti, Mn, Li, Se ?1, Rb, Ag, Ba, Pb, As, Cd, Cr, Fe, Ni, V and Zn by inductively coupled plasma mass spectrometry (ICP–MS). Upon using MIC it was possible to obtain lower limits of detection by ICP–MS and also by ICP–OES compared with those obtained by microwave‐assisted digestion. The MIC was the best choice with regard to the possibility of using dilute nitric acid as an absorbing solution, which is important to minimize the interference encountered by ICP–MS and ICP–OES.The physicochemical parameters and some contaminants of crude oil samples were analyzed to classify and assess the quality of the crude oils. This study determines the viability of the use of Fourier transform infrared spectroscopy as an alternativee to traditional petroleum geochemical methods for crude oil characterization. The infrared fingerprints agree with the results obtained from GC–MS analysis. 相似文献
10.
While CH–π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH–π interactions in drug–protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein–ligand CH–π interactions in solution. By combining selective amino‐acid side‐chain labeling with 1H‐ 13C NMR, we are able to identify specific protein protons of side‐chains engaged in CH–π interactions with aromatic ring systems of a ligand, based solely on 1H chemical‐shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH–π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions. 相似文献
11.
This study aims to develop highly efficient, recyclable solid catalysts for the epoxidation of vegetable oils. An Al 2O 3–ZrO 2–TiO 2 solid acid catalyst was prepared by a co‐precipitation/impregnation method and characterised through scanning electron microscopy, energy‐dispersive spectroscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, Fourier‐transform infrared and nitrogen adsorption–desorption analyses. The solid acid catalyst with a high surface area and typical slit pore adsorption was successfully synthesised. Al 2O 3–ZrO 2–TiO 2 also exhibits high stability and improved catalytic efficiency in the epoxidation of soybean oil. An oil conversion rate of 86.6%, which is higher than that of conventional catalysts, was obtained with a catalyst loading of 0.8 wt% and was maintained at 76.6% even after recycling the catalyst three times. The performance of the solid catalyst was slightly superior to that of H 2SO 4. Therefore, this novel catalyst may potentially be applicable in catalysing soybean oil epoxidation. 相似文献
12.
Cobalt–silicon mixed oxide materials (Co/Si=0.111, 0.250 and 0.428) were synthesised starting from Co(NO 3) 2·6H 2O and Si(OC 2H 5) 4 using a modified sol–gel method. Structural, textural and surface chemical properties were investigated by thermogravimetric/differential thermal analyses (TG/DTA), XRD, UV–vis, FT-IR spectroscopy and N 2 adsorption at −196 °C. The nature of cobalt species and their interactions with the siloxane matrix were strongly depending on both the cobalt loading and the heat treatment. All dried gels were amorphous and contained Co 2+ ions forming both tetrahedral and octahedral complexes with the siloxane matrix. After treatment at 400 °C, the sample with lowest Co content appeared amorphous and contained only Co 2+ tetrahedral complexes, while at higher cobalt loading Co 3O 4 was present as the only crystalline phase, besides Co 2+ ions strongly interacting with siloxane matrix. At 850 °C, in all samples crystalline Co 2SiO 4 was formed and was the only crystallising phase for the nanocomposite with the lowest cobalt content. All materials retained high surface areas also after treatments at 600 °C and exhibited surface Lewis acidity, due to cationic sites. The presence of cobalt affected the textural properties of the siloxane matrix decreasing microporosity and increasing mesoporosity. 相似文献
13.
This study aimed to investigate the effect of the maturation process of sweet marjoram ( Origanum majorana L.) on essential oil composition, the phenolic profile of ethanolic extract and their antioxidant capacities. The essential oil composition was studied at three stages of maturity by GC–MS. Thirty compounds were detected representing 100% of the total essential oil. p‐Menth‐1‐en‐4‐ol was the major compound (37.15–76.94%) followed by cyclohexanol‐3,3,5 trimethyl (5.41–15.99%) and α‐terpineol (0.94–11.34%). During the maturation process, an accumulation of oxygenated monoterpenes was observed. The phenolic composition was studied using matrix‐assisted laser desorption/ionization time of flight. The analysis showed the presence of short flavonoid monomers at all stages of maturation. The antioxidant capacity of ethanolic extracts and essential oils was evaluated using the DPPH assay, iron chelating power and reducing power assay. The highest phenolic content and antioxidant capacity were found at flowering stage. These findings on essential oil composition, phenolic profile and antioxidant capacity of O. majorana at three different stages of development provide more information on how these secondary metabolites are accumulated. 相似文献
14.
Sense and antisense peptides, encoded by sense and corresponding antisense DNA strands, are capable of specific interactions that could be a driving force to mediate protein–protein or protein–peptide binding associations. The complementary residue hypothesis suggests that these interactions are founded upon the sum of pairwise interactions between amino acids encoded by corresponding sense and antisense codons. Despite many successful experimental results obtained with the hypothesis, however, the physicochemical basis for these interactions is poorly understood. We examined the potential of the hypothesis for general identification of protein–protein interaction sites, and the possible role of the hypothesis in determining folding in a broad set of protein structures. In addition, we performed a structural study to investigate the binding of a complementary peptide to IL‐1F2. Our results suggest that complementary residue pairs are no more frequent or conserved than average in protein–protein interfaces, and are statistically under‐represented amongst contacting residue pairs in folded protein structures. Although our structural results matched experimental observations of binding between the peptide and IL‐1F2, complementary residue interactions do not appear to be dominant in the bound structure. Overall, our data do not allow us to conclude that the complementary residue hypothesis accounts for specific sense–antisense peptide interactions. © 2012 Wiley Periodicals, Inc. 相似文献
15.
Mineral oils, which are mainly composed of saturated hydrocarbons and aromatic hydrocarbons, are widespread food contaminants. Liquid chromatography coupled to gas chromatography with flame ionization detection represents the method of choice to determine these two families. However, despite the high selectivity of this technique, the presence of olefins (particularly squalene and its isomers) in some samples as in olive oils, does not allow the correct quantification of the mineral oil aromatic hydrocarbons fraction, requiring additional off‐line tools to eliminate them. In the present research, a novel on‐line liquid chromatography coupled to gas chromatography method is described for the determination of hydrocarbon contamination in edible oils. Two different liquid chromatography columns, namely a silica one (to retain the bulk of the matrix) and a silver‐ion one (which better retains the olefins), were coupled in series to obtain the mineral oil aromatic hydrocarbons hump free of interfering peaks. Furthermore, the use of a simultaneous dual detection, flame ionization detector and triple quadrupole mass spectrometer allowed us not only to quantify the mineral oil contamination, but also to evaluate the presence of specific markers (i.e. hopanes) to confirm the petrogenic origin of the contamination. 相似文献
16.
Extraction of lithium ions from salt‐lake brines is very important to produce lithium compounds. Herein, we report a new approach to construct polystyrene sulfonate (PSS) threaded HKUST‐1 metal–organic framework (MOF) membranes through an in situ confinement conversion process. The resulting membrane PSS@HKUST‐1‐6.7, with unique anchored three‐dimensional sulfonate networks, shows a very high Li + conductivity of 5.53×10 ?4 S cm ?1 at 25 °C, 1.89×10 ?3 S cm ?1 at 70 °C, and Li + flux of 6.75 mol m ?2 h ?1, which are five orders higher than that of the pristine HKUST‐1 membrane. Attributed to the different size sieving effects and the affinity differences of the Li +, Na +, K +, and Mg 2+ ions to the sulfonate groups, the PSS@HKUST‐1‐6.7 membrane exhibits ideal selectivities of 78, 99, and 10296 for Li +/Na +, Li +/K +, Li +/Mg 2+ and real binary ion selectivities of 35, 67, and 1815, respectively, the highest ever reported among ionic conductors and Li + extraction membranes. 相似文献
18.
The NCX‐NCI‐HMY (X=H, Cl, Br, I, Li; M=Be, Mg; Y=H, Li, Na) trimers are investigated to find ways to enhance the iodine–hydride interaction. The interaction energy in the NCI–HMH dimer is ?2.87 and ?5.87 kcal mol ?1 for M=Be and Mg, respectively. When the free H atom in the NCI–HMH dimer is replaced with an alkali atom, the interaction energy is enhanced greatly. When NCX is added into this dimer, the interaction energy of the iodine–hydride interaction is increased by 9–45 % and its increased percentage follows the order X=Cl<Br<H<I<Li and M=Be<Mg. The combination of the alkali substitution and the cooperativity results in a more prominent enhancing effect. The largest interaction energy is found for the NCLi–NCI–HMgLi trimer (?7.03 kcal mol ?1). The influence of the I???H interaction on the X???N interaction is also studied in the trimers. Both types of interactions are analyzed with NBO, AIM, and MEP. The interaction energy in the trimer is also unveiled by a many‐body analysis. 相似文献
19.
The enhancement of the binding between halide anions and a Lewis acidic uranyl–salophen receptor has been achieved by the introduction of pendant electron‐deficient arene units into the receptor skeleton. The association and the occurrence of the elusive anion–π interaction with halide anions (as tetrabutylammonium salts) have been demonstrated in solution and in the solid state, providing unambiguous evidence on the interplay of the concerted interactions responsible for the anion binding. 相似文献
20.
Docetaxel, frequently used for the treatment of breast cancer, is mainly metabolized via hepatic cytochrome P450 (CYP) 3A in humans and is also a substrate of P‐glycoprotein (P‐gp). Wogonin has been shown to be able to modulate the activities of CYPs and P‐gp, and it could serve as an adjuvant chemotherapeutic agent. However, the impacts of co‐administration of wogonin and docetaxel on their pharmacokinetics have not been studied because of a lack of an analytical method for their simultaneous measurement. In the present study, we established an HPLC–MS/MS method for simultaneous measurement of wogonin and docetaxel in rat plasma, and it was then utilized to explore the pharmacokinetics of wogonin and the herb–drug interactions between wogonin and docetaxel after their combined administration in rats with mammary tumors. The rats received 10, 20 and 40 mg/kg wogonin via oral administration, with or without docetaxel intravenously administered at 10 mg/kg, and the plasma concentrations of wogonin and docetaxel were measured using the established and validated HPLC–MS/MS method. The Cmax and AUC 0–t of wogonin were proportionally increased in the dose range from 10 to 40 mg/kg, suggesting a linear pharmacokinetics of wogonin. Moreover, the Cmax and AUC 0–t of docetaxel and the AUC 0–t of wogonin were increased after co‐administration ( p < 0.05), indicating increased in vivo exposures of both wogonin and docetaxel, which might lead to an increase in not only therapeutic but also toxic effects. Thus the alterations of pharmacokinetics should be taken into consideration when wogonin and docetaxel are co‐administered. 相似文献
|