首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of pulse ultrasound with different pulse parameter on the adsorption isotherm and kinetics of Geniposide on Resin 1300 were studied. And the mass transfer model describing the adsorption process was constructed. Amount of Geniposide adsorbed on Resin 1300 in the presence of ultrasound is lower than that in the absence of ultrasound. At our experimental conditions, the adsorption equilibrium constant decreases with increasing ultrasonic intensity and pulse duty ratio, and with decreasing pulse period. In addition, pulse ultrasound can enhance both liquid film diffusion and intraparticle diffusion, and the intensification of liquid film diffusion with pulse ultrasound is stronger than that of intraparticle diffusion. The intraparticle diffusion coefficient D(e)/R2 increases with increasing ultrasonic intensity and pulse duty ratio, and with decreasing pulse period.  相似文献   

2.
本文阐述了超声波用于树脂再生的最新技术,超声脱附以及它的原理一超声场聚能效应。该方法和传统的化学方法相比较:不仅具有操作简单,化学药品消耗少,排污量少等优点。而且还能增加树脂的脱附速率,减少脱附时间,增加解吸平衡物的浓度。本文综述了在这一领域的最近研究进展,各种不同频率和功率对树脂再生效果的影响,为该领域的研究工作提供参考。  相似文献   

3.
The effect of 48-kHz ultrasound on the adsorption and desorption of phenol from aqueous solutions onto coconut shell-based granular activated carbons was studied at 25 degrees C. Experiments were performed at different carbon particle sizes (1.15, 2.5, 4.0 mm), initial phenol concentrations (1.06-10.6 mol/m3), and ultrasonic powers (46-133 W). Regardless of the absence and presence of ultrasound, the adsorption isotherms were well obeyed by the Langmuir equation. When ultrasound was applied in the whole adsorption process, the adsorption capacity decreased but the Langmuir constant increased with increasing ultrasonic power. According to the analysis of kinetic data by the Elovich equation, it was shown that the initial rate of adsorption was enhanced after sonication and the number of sites available for adsorption was reduced. The effect of ultrasonic intensity on the initial rate and final amount of desorption of phenol from the loaded carbons using 0.1 mol/dm3 of NaOH were also evaluated and compared.  相似文献   

4.
Subcritical water is tested as an agent for caprolactam and nitrobenzene desorption from the hyper-cross-linked polystyrene sorbents MN-202 and MN-270. The efficiencies of desorption of these two compounds by subcritical water and by a water solution of isopropanol are compared.  相似文献   

5.
A mathematical model to describe the pulse shape of delayed adsorbate fluorescence is proposed that accounts for desorption of oxygen molecules from the surface of a substrate induced by interaction with phonons. A numerical study of the temperature dependence of the probability of desorption of oxygen molecules from the substrate surface and of the luminescence intensity is carried out.  相似文献   

6.
7.
Effects of ultrasound on polymeric foam porosity   总被引:1,自引:0,他引:1  
A variety of materials require functionally graded cellular microstructures whose porosity is engineered to meet specific applications (e.g. mimic bone structure for orthopaedic applications; fulfil mechanical, thermal or acoustic constraints in structural foamed components, etc.). Although a huge variety of foams can be manufactured with homogenous porosity, there are no generic processes for controlling the distribution of porosity within the resulting matrix. Motivated by the desire to create a flexible process for engineering heterogeneous foams, the authors have investigated how ultrasound, applied during the formation of a polyurethane foam, affects its cellular structure. The experimental results demonstrated how the parameters of ultrasound exposure (i.e. frequency and applied power) influenced the volume and distribution of pores within the final polyurethane matrix: the data demonstrates that porosity (i.e. volume fraction) varies in direct proportion to both the acoustic pressure and frequency of the ultrasound signal. The effects of ultrasound on porosity demonstrated by this work offer the prospect of a manufacturing process that can adjust the cellular geometry of foam and hence ensure that the resulting characteristics match the functional requirements.  相似文献   

8.
The effect of ultrasound on the kinetics of anti-solvent crystallization of sucrose was studied. The influence of temperature, stirring rate, supersaturation and ultrasonic power on the anti-solvent crystallization of sucrose was investigated. The relationship between infrared spectral characteristic band of sucrose and supersaturation was determined with an online reaction analyzer. The crystal size distribution of sucrose was detected by a laser particle-size analyzer. Ultrasound accelerated the crystallization process, and had no impact on the crystal shape. Abegg, Stevens and Larson model was fitted to the experimental data, and the results were the following: At 298.15 K, the average size of crystals was 133.8 μm and nucleation rate was 4.87 × 109 m−3·s−1 without ultrasound. In an ultrasonic field, the average size was 80.5 μm, and nucleation rate was 1.18 × 1011 m−3·s−1. Ultrasound significantly reduced the average size of crystals and improved the nucleation rate. It was observed that the crystal size decreased with the increase of stirring rate in silent environment. When the stirring rate increased from 250 to 400 rpm, the average size decreased from 173.0 to 132.9 μm. However, the stirring rate had no significant impact on the crystal size in the ultrasonic field. In addition, the activation energy of anti-solvent crystallization of sucrose was decreased, and the kinetic constant of nucleation rate was increased due to the effect of ultrasound. In the ultrasonic field, the activation energy was reduced from 20422.5 to 790.5 J·mol−1, and the kinetic constant was increased from 9.76 × 102 to 8.38 × 108.  相似文献   

9.
The zero-order desorption kinetics is described for adsorbate systems in which three phases are in equilibrium and first-order desorption kinetics is assumed for the desorption from the topmost phase. The calculated results represent typical features of the observed zero-order desorption spectra. The possibility of specifying the phase boundaries from the thermal or isothermal desorption spectra is proposed. The relationship between the thermal or isothermal desorption processes and trajectories in the phase diagram is also discussed.  相似文献   

10.
In this study, we focused on the effect of ultrasound on ion exchange kinetics to obtain the Li-, Ca- and Ce-rich NaX zeolite. The results were compared to those obtained from the traditional batch exchange method under similar conditions. Contact time and initial cation concentration (fold equivalent excess) were studied. Ultrasound enhanced the replacement of Na+ ion with Li+, Ca2+ and Ce3+ ions in the extra-framework of zeolite up to 76%, 72% and 66%, respectively. The intraparticle diffusion is the rate limiting step in the ion exchange for both exchange methods. As compared to the traditional exchange method, the ultrasonic method applied in this study was found to be very effective on the exchange amount at equilibrium.  相似文献   

11.
The isothermal kinetics of nicotine desorption from silicon dioxide (SiO2) was investigated. The isothermal thermogravimetric curves of nicotine at temperatures of 115 °C, 130 °C and 152 °C were recorded. The kinetic parameters (Ea, ln A) of desorption of nicotine were calculated using various methods (stationary point, model constants and differential isoconversion method). By applying the “model-fitting” method, it was found that the kinetic model of nicotine desorption from silicon dioxide was a phase boundary controlled reaction (contracting volume). The values of the kinetic parameters, Ea,α and ln Aα, complexly change with changing degree of desorption and a compensation effect exists. A new mechanism of activation for the desorption of the absorbed molecules of nicotine was suggested in agreement with model of selective energy transfer.  相似文献   

12.
Ultrasound is known to enhance solid/liquid reactions. This paper deals with the investigation of the dissolution of phosphate rock in nitric acid, in the absence and presence of ultrasound. The reaction is first-order with respect to H+ and activation energy equal to 16 kJ/mol in both cases. The effect of ultrasound is on the pre-exponential factor A. An empirical relation is given, which relates rate constant to ultrasound power.  相似文献   

13.
Recent experiments studying helium desorption by heat pulse techniques are interpreted in terms of a model in which the film is assumed to have the thermodynamic properties of bulk liquid helium, and the vapor is described by kinetic theory. Equations for energy and mass conservation are sufficient to determine the behavior of the system. The most important parameter in the model turns out to be the interfacial thermal resistance between the film and vapor, Rv,. This quantity varies over orders of magnitude, and is found to govern a number of the phenomena observed in the experiments. In addition to resolving some of the puzzles arising in desorption experiments, the model serves to clarify the relationship between this work and an earlier body of work concerning the Kapitza resistance in adsorbed films. Predictions of the model compare remarkably well to the results of both types of experiment.  相似文献   

14.
Sorption of phenol onto organophilic bentonite (nanoclay) by ultrasonic irradiation was investigated. Tetrabutyl ammonium chloride (TBAC), N-acetyl-N,N,N trimethyl ammonium bromide (CTAB) and hexadecyl trimethyl ammonium chloride (HDTMA) were used as intercalating agents. Nanoclay was synthesized using sonication technique. TBAC modified nanoclay shows amorphous exfoliated nature, while CTAB and HDTMA modified nanoclay shows intercalating crystalline nature, which was revealed by XRD gram. Further FTIR reveals the presence of NH(2) and (CH(2))(n) groups onto clay platelet. Due to sonication, adsorption equilibrium was achieved within short period of time (10 min). It was found that intraparticle diffusion resistance has overcome due to sonication. The experimental data obtained obeys both Freundlich isotherm model and Langmuir adsorption isotherm model. HDTMA modified nanoclay shows higher parameter values.  相似文献   

15.
The common observation that the diffusivity of hydrogen in iron decreases anomalously at low temperatures is treated in terms of the barrier to adatom recombination and desorption that is known to be associated with the surfaces of this metal. Results obtained are in good agreement both with data on deuterium permeation through a polycrystalline iron sample, obtained in this study, and with the body of measurements for hydrogen diffusion through iron found in the literature.  相似文献   

16.
A laser heating technique for studying fast surface processes has been applied in an initial study to the thermal desorption of D2 from a polycrystalline tungsten sample. This technique is a means for measuring surface reactions at rates, concentrations, and temperatures that approach conditions of technical interest, but with the high degree of definition and control made possible with an ultrahigh vacuum apparatus. The method is analogous to the fast temperature jump method used for studying reactions in condensed phases, and can sort out elementary processes that have differing activation energies. The variation of total flux desorbed with maximum surface temperature reached and initial surface coverage serves, with the aid of a model kinetic rate expression, to determine the desorption rate parameters. It is shown that the desorption of D2 from W at rates of 5 × 107 monolayers/sec is governed by the same kinetics as obtained by extrapolating previous measurements made at a rate about 105 times slower. The surface is subjected to a sufficiently fast and large temperature rise to desorb surface atoms or molecules in a time short compared to the range of flight times to a mass spectrometer detector. In this way the velocity distribution of the desorbing species may be determined. This along with the surface temperature history gives additional information on the reaction rate model and also whether the species are emerging in translational thermal equilibrium with the surface. In the present experiments a significant number of desorbatedesorbate collisions occur. Corrections are made for the collision effects in the interpretation of the data. It is shown how modifications of the technique can be made to substantially eliminate these effects. The present conditions were laser pulse width of 3 × 10?8 sec and surface temperature rise of 300 to 3000 K.  相似文献   

17.
This study aimed to investigate the effect of ultrasonic power and temperature on the impurity removal rate during conventional and ultrasonic-assisted leaching of aphanitic graphite. The results showed that the ash removal rate increased gradually (∼50 %) with the increase in ultrasonic power and temperature but deteriorated at high power and temperature. The unreacted shrinkage core model was found to fit the experimental results better than other models. The Arrhenius equation was used to calculate the finger front factor and activation energy under different ultrasonic power conditions. The ultrasonic leaching process was significantly influenced by temperature, and the enhancement of the leaching reaction rate constant by ultrasound was mainly reflected in the increase of the pre-exponential factor A. Ultrasound treatment improved the efficiency of impurity mineral removal by destroying the inert layer formed on the graphite surface, promoting particle fragmentation, and generating oxidation radicals. The poor reactivity of hydrochloric acid with quartz and some silicate minerals is a bottleneck limiting the further improvement of impurity removal efficiency in ultrasound-assisted aphanitic graphite. Finally, the study suggests that introducing fluoride salts may be a promising method for deep impurity removal in the ultrasound-assisted hydrochloric acid leaching process of aphanitic graphite.  相似文献   

18.
19.
Effect of ultrasound on oil removal from soils   总被引:5,自引:0,他引:5  
Kim YU  Wang MC 《Ultrasonics》2003,41(7):539-542
The soil-flushing method enhanced by ultrasonic waves is a new technique that potentially can become an effective method for in situ remediation of the ground contaminated by NAPL hydrocarbons. This study investigated the effectiveness of ultrasound enhancement in the soil-flushing method for a range of conditions involving soil type, soil density, flushing rate, and sonication power. The study was conducted in the laboratory using specially designed and fabricated equipment. The test results indicated that the rate of contaminant extraction increased considerably with increasing sonication power up to the level where cavitation occurred. The effectiveness of sonication-enhanced soil-flushing can be expressed as a function of (D(10))(2)*i, in which D(10) is the effective grain size, and i is the hydraulic gradient.  相似文献   

20.
Thermal desorption from the surfaces of films and polycrystals undergoing semiconductor-metal (VO2), ferroelectric-paraelectric (Ba0.9Sr0.1TiO3 and TsTS-19), ferromagnet-paramagnet (Ni) phase transitions has been investigated. A sharp increase in the desorption activity of a surface was observed near a phase transition. The increase in the thermal desorption signal is caused by local deformations which arise in a solid at a phase transition. Fiz. Tverd. Tela (St. Petersburg) 39, 573–576 (March 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号