首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called “Real-time Radiation Monitoring Device (RRMD)” utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 μSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5°) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15–200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.  相似文献   

2.
The LET distributions during the Space Shuttle missions STS-84 (altitude 270-412 km, average 375 km; inclination angle, 51.6 degrees) and STS-91 (altitude 328-397 km, average 373 km; inclination angle, 51.6 degrees) were measured using CR-39 plastic nuclear track detectors. A correction for the dip-angle dependence of the track-formation sensitivity of the CR-39 plates was applied to the data analysis. The absorbed doses and the dose equivalents around RRMD Detector Units, estimated from the LET distributions in the LET region of 4-200 keV/micrometers, fluctuated with standard deviations of +/- 21% to +/- 35% in both flight experiments. The LET distributions obtained from the CR-39 plates agreed well with that obtained from RRMD-II in STS-91. However, the particle fluxes obtained from RRMD-III in STS-84 and STS-91 were two or three times higher than those obtained from RRMD-II and the CR-39 plates. It was concluded that the LET distributions obtained from RRMD-II and the CR-39 plates in the present flight experiments did not include the contribution of target-fragmented secondary heavy particles produced by low-LET particles, such as relativistic or semi-relativistic protons and helium ions, whereas RRMD-III was able to detect these secondary particles because of its low triggering level.  相似文献   

3.
We studied the track response for the copolymer of CR-39 monomer with N-isopropylacrylamide (NIPAAm) as well as etching properties. It was found that copoly (CR-39/NIPAAm/Naugard 445) composed in wieght ratio of 99/1/0.01 is highly sensitive to low LET particles in the region below 10 keV/μm of LET and able to record normally incident particles of LET down to 1.5 keV/μm, recording protons up to the energy of 27 MeV. These results were compared with the responses for two types of CR-39 detectors containing a small quantity of antioxidant. The threshold energy proton registration is discussed.  相似文献   

4.
Human will be sooner or later return to the moon and will eventually travel to the planets near Earth. Space radiation hazards are an important concern for human space flight in deep space where galactic cosmic rays (GCR) and solar energetic particles are dominated and radiation is much stronger than that in LEO (Low Earth Orbit) because in deep space there is no magnetosphere to screen charged particle and no big planet nearby to shadow the spacecraft.Research indicates that the impact of particle radiation on humans depends strongly on the particles' linear energy transfer (LET) and the radiation risk is dominated by high LET radiation. Therefore, radiation research on high LET should be emphasized and conducted systematically so as to make radiation risk as low as reasonably achievable (ALARA) for astronauts.Radiation around the moon can be measured with silicon detectors and/or CR-39 plastic nuclear track detectors (PNTDs). At present stage the silicon detectors are one of the preferred active dosimeters which are sensitive to all LET and CR-39 detectors are the preferred passive dosimeters which are sensitive to high LET (≥5 keV/μm water). CR-39 PNTDs can be used as personal dosimeters for astronauts. Both the LET spectrum and the charge spectrum for charged particles in space can be measured with silicon detectors and CR-39 detectors.Calibrations for a detector system combined with the silicon detectors CRaTER (Cosmic Rays Telescope for the Effects of Radiation) from Boston University and Massachusetts Institute of Technology, and the CR-39 PNTDs from JSC (Johnson Space Center) – SRAG (Space Radiation Analysis Group) were conducted by exposing the detector system to the accelerator generated protons and heavy ions. US space mission for the radiation measurement around the moon using CRaTER was carried out in 2009.Results obtained from the calibration exposures indicate an excellent agreement between LET spectrum and charge spectrum measured with CR-39 detectors and simulated with PHITS (Particle and Heavy Ion Transport System).This paper introduces the LET spectrum method and charge spectrum method using CR-39 PNTDs and the Monte Carlo simulation method for CR-39 detectors, presents and compares the results measured with CR-39 PNTDs and simulated for CR-39 detectors exposed to heavy irons (600 MeV/n) in BNL (Brookhaven National Laboratory) in front and behind the CRaTER.  相似文献   

5.
《Radiation measurements》2007,42(9):1499-1506
High LET (linear energy transfer) radiation is the main contributor to the radiation field in low Earth orbit (LEO) in terms of dose equivalent. CR-39 plastic nuclear track detectors (PNTDs) can measure the LET spectrum and charge spectrum for the complicated radiation field in space. Previous research indicated that the sensitivity of CR-39 is different for CR-39 PNTDs working in different oxygen environments. LET calibration for CR-39 detectors in different oxygen environments is needed. Almost all the previous LET calibration work was carried out for CR-39 detectors in good-oxygen condition, LET calibration work for CR-39 in poor-oxygen condition has not been conducted until our work. Systematic LET calibrations were carried out by JSC-SRAG (Space Radiation Analysis Group) for CR-39 detectors working in different oxygen environments and abundant results of LET calibrations were obtained. This paper introduces the method for CR-39 LET calibration, presents and discusses the calibration results and some applications.  相似文献   

6.
Four experiments utilizing passive detectors (P0006, P0004, A0015, M0004) were flown on LDEF to study the radiation environment. These experiments have been summarized in a companion paper (Benton et al., 1996). One of the experimental goals was to measure LET spectra at different locations and shielding depths with plastic nuclear track detectors (PNTD). It was found that the LET spectra extended well above the LET cutoff imposed by the geomagnetic field on GCR particle penetration into LEO. The high LET particles detected were mostly short-range (range < 2000 μm), indicating that they were secondaries produced locally within the PNTD. The presence of these high LET particle fluences is important for the determination of dose equivalent because of the high Quality Factors (Q) involved. A relatively small fraction of particle fluence can contribute a large fraction of dose equivalent.

Short-range, inelastic secondary particles produced by trapped protons in the South Atlantic Anomaly (SAA) were found to be a major contributor to the LET spectra above 100 keV/μm. The LET spectra were found to extend beyond the 137 keV/μm relativistic GCR Fe peak to over 1000 keV/μm. The high LET tail of the LET spectra was measured in CR-39 and polycarbonate PNTDs using different techniques. GCR made a relatively modest contribution to the LET spectra as compared to the contributions from short-range secondary particles and stopping protons.

LET spectra intercomparisons were made between LDEF measurements and exposures to 154 MeV accelerated proton beams. The similarities support the role of nuclear interactions by trapped protons as the major source of secondary particles in the PNTDs. Also techniques were employed to reduce the range cutoff for detection of the short-range secondaries to 1 μm, so that essentially all secondary particles were included in the LET spectra. This has allowed a more realistic assessment of secondary contribution to dose equivalent.

Comparisons of measured and calculated LET spectra have been made that demonstrate the need for more accurate modeling of secondary particles in radiation transport codes. Comparisons include preliminary calculations in which attempts have been made to include secondary particles.  相似文献   


7.
In selected Cd-doped monocristalline silverchloride detectors we observe developed tracks from particles at LET values > 300 keV/μm AgCl and charge state values > 9, without a visible central region: the “hollow track”. The microdensitometric lateral profile shows a density decrease near the track axis, up to a radial extension of some microns from highly charged particles as Fe or U-ions of several MeV/u; the tracks of fast U- or Fe-projectiles, moreover, represent an entanglement of delta-electron tracks only. A recent reanalysis of this “hollow track”-effect is suggested to be caused by recombination effects and structural distortions. They occure in areas of high delta-electron density; together with the characteristic process of track formation in crystalline AgCl/Cd they enable us to vizualise and to measure the radial range of distortion and to evaluate the threshold of the energy density above which the destruction occurs.  相似文献   

8.
Detector packages consisting of plastic nuclear track detectors, nuclear emissions, and thermoluminescence detectors were exposed inside BIORACK during the Spacelab missions IML1 and IML2, in different sections of the MIR space station, and inside the Spacelab module at rack front panels or stowage lockers and in the Spacelab tunnel during D2. In addition, during D2, each Payload Specialist (PS) has worn three permanent detector packages; one at the neck; one at the waist; and one at the ankle. Total dose measurements, particle fluence rate and LET spectra, number of nuclear disintegrations and neutron dose from this exposure are given in this report. The results are compared to theoretical calculations and to previous missions results. The dose equivalent (total radiation exposure) received by the PSs were calculated from the measurements and range from 190 to 770 μSv d−1. Finally, a cursory investigation of results from a particle telescope from two silicon detectors, first used in the last BIORACK mission on STS76, is reported.  相似文献   

9.
In this work, we have studied the effect of the radiation damage caused by the incident particles on the activation energy of etching for CR-39 samples. The damage produced by the incident particle is expressed in terms of the linear energy transfer (LET). CR-39 samples from American Acrylic were irradiated to three different LET particles. These are N (LET200 = 20 KeV/μm) as a light particle, Fe (LET200 = 110 KeV/μm) as a medium particle and fission fragments (ff) from a 252Cf source as heavy particles. In general the bulk etch rate was calculated using the weight difference method and the track etch rate was determined using the track geometry at various temperatures (50–90 °C) and concentrations (4–9 N) of the NaOH etchant. The average activation energy Fb related to the bulk etch rate vb was calculated from ln vb vs. l/T. The average activation energy Et related to the track etch rate vt was estimated from ln vt vs. l/T. It is shown that activation energy of etching is a constant value for CR-39 detector where Et was found to be independent on the damage produced by the incident particle.  相似文献   

10.
《Radiation measurements》1997,28(1-6):455-462
Using CR-39 plastic track detectors the range values of 16O ions at two different energies (initially in the beam line, 39.97 MeV/n and 69.98 MeV/n) were measured after escaping the beam pipe and found to be (3050 ± 40) μm and (8210 ± 90) μm, respectively. The longitudinal and projected angular spread of oxygen ions of an initial energy of 69.98 MeV/n in the region of the Bragg peak was derived from the measured geometrical parameters of tracks. Based on a calibration curve (etch rate ratio vs total linear energy transfer in CR-39) and the measured track length distribution at the range end of oxygen ions, the complete depth dose profile of a 67.7 MeV/n 16O beam in CR-39 (plateau, extended Bragg peak and residual ionization caused by projectile like fragments) was obtained.  相似文献   

11.
A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on Space Shuttle flight STS-57 was conducted. The Shuttle flew in a nearly circular orbit of 28.5 degrees inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTDs) and thermoluminescent detectors (TLDs), and Russian nuclear emulsions, PNTDs and TLDs. All the detector systems were shielded by the same Shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/micrometers and 200 keV/micrometers. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than the TLDs, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLDs to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.  相似文献   

12.
《Radiation measurements》2001,34(1-6):193-197
A spectrometer of the linear energy transfer (LET) based on the chemically etched polyallyldiglycolcarbonate (PADC) track etched detector was developed. The LET spectra are determined through the measurements of track parameters, it covers LET range between 10 and 700 keV/μm in tissue. A combined experimental and theoretical approach allowed the estimation of the critical dimensions of the sensitive volume necessary for developing a track to several nm. It seemed interesting to us to compare the LET spectra obtained by this method with the microdosimetric spectra available on the basis of a classical experimental microdosimetry method, a tissue equivalent proportional counter, for which the critical dimensions simulated are of the order of a few μm.

Both methods of experimental microdosimetry were compared in the high energy radiation reference fields and on the subsonic aircraft board. It was found out that the microdosimetric distributions are similar; some differences are, nevertheless, observed. Further studies with the goal to explain them are outlined.  相似文献   


13.
As a frame work of the study for the latent track size measurement using atomic force microscope, we have measured the minute etch pits and the extremely small amount of bulk etch of CR-39 at the beginning of chemical etching, and obtained its growth curves in nanometer dimensions. The pieces of CR-39 were exposed to 6 MeV/nC and Fe ions with normal incidence angle and were etched in 70°C 7 N NaOH solution for 0.5,1,2,3,5 min. The diameters of latent track were estimated to be 17 nm for Fe ions and 8 nm for C ions, respectively. These values are comparable to the experimental data on the average ‘track core diameters’ that have been obtained by various experimental techniques.  相似文献   

14.
Intercomparison of radiation measurements on STS-63   总被引:1,自引:0,他引:1  
A joint NASA Russia study of the radiation environment inside the Space Shuttle was performed on STS-63. This was the second flight under the Shuttle-Mir Science Program (Phase 1). The Shuttle was launched on 2 February 1995, in a 51.65° inclination orbit and landed at Kennedy Space Center on 11 February 1995, for a total flight duration of 8.27 days. The Shuttle carried a complement of both passive and active detectors distributed throughout the Shuttle volume. The crew exposure varied from 1962 to 2790 μGy with an average of 2265.8 μGy or 273.98 μGy/day. Crew exposures varied by a factor of 1.4, which is higher than usual for STS mission. The flight altitude varied from 314 to 395 km and provided a unique opportunity to obtain dose variation with altitude. Measurements of the average east-west dose variation were made using two active solid state detectors. The dose rate in the Spacehab locker, measured using a tissue equivalent proportional counter (TEPC), was 413.3 μGy/day, consistent with measurements made using thermoluminescent detectors (TLDs) in the same locker. The average quality factor was 2.33, and although it was higher than model calculations, it was consistent with values derived from high temperature peaks in TLDs. The dose rate due to galactic cosmic radiation was 110.6 μGy/day and agreed with model calculations. The dose rate from trapped particles was 302.7 μGy/day, nearly a factor of 2 lower than the prediction of the AP8 model. The neutrons in the intermediate energy range of 1–20 MeV contributed 13 μGy/day and 156 μSv/day, respectively. Analysis of data from the charged particle spectrometer has not yet been completed.  相似文献   

15.
Samples of polyallyldiglycolcarbonate (PADC) track etch detectors (TED) were exposed to high energy 12C nuclei at the particle beam of the Dubna synchrophasotron. The energy of 12C nuclei varied between 0.1 and 1.5 GeV per amu.

At the low studied energies the linear energy transfer (LET) of these nuclei is higher than the detector threshold value. Then, the primary particle tracks are directly etched in the detector surface. The detection efficiency approaches to 100% at perpendicular incidence. Their LET has been established by means of standard authomatized procedure recently developed. The LET values found here are in good agreement with theoretical ones.

At 1.5 GeV per amu (LET 8.4 KeV μm−1) the secondary particle tracks were evaluated in all the exposed detectors. The energy deposited by these particles was compared to the energy deposited through primary ionization losses. It was found out that its contribution to the total dose is relatively lower than for protons of comparable energies. In some of these samples even the tracks of the primary nuclei were observed. It follows that the detection threshold of the developed LET spectrometer should be below 10 keV μm−1.  相似文献   


16.
LET spectra measurements made with passive plastic nuclear track detectors (PNTDs) were found to depend on detector orientation, shielding and experiment location. LET spectra were measured at several locations on LDEF as part of the P0006 LETSME experiment (Benton and Parnell, 1984), the P0004 Seeds in Space experiment (Parks and Alston, 1984), the A0015 Free Flyer Biostacks and the M0004 Fiber Optics Data Link experiment (Taylor, 1984). Locations included the east, west and Earth sides of the LDEF satellite. The LET spectra measured with PNTDs deviated significantly from calculations, especially for high LET particles (LET·H2O ≥ 100 keV/μm). At high LETs, short-range inelastic secondary particles produced by trapped proton interactions with the nuclei of the detector were found to be the principal contributor to LET spectra. At lower LETs, the spectra appeared to be due to short-range, inelastic and stopping primary protons, with primary GCR particles making a smaller contribution.

The dependence of LET spectra on detector orientation and shielding was studied using the four orthogonal stacks in the P0006 experiment. Both measurements of total track density and LET spectra showed a greater number of particles arriving from the direction of space than from Earth. Measurements of LET spectra in CR-39 PNTD on the east (leading) and west (trailing) sides of LDEF showed a higher rate of production at the west side. This was caused by a larger flux of trapped protons on the west side as predicted by the east/west trapped proton anisotropy in the South Atlantic Anomaly (SAA).

Track density measured in CR-39 PNTDs increased as a function of shielding depth in the detector stack. A similar measurement made in a thick stack of CR-39 interspersed with layers of Al and exposed to 154 MeV protons at a ground-based accelerator showed a similar result, indicating that a significant fraction of the particle events counted were from secondaries and that the total cross-section for production of proton-induced secondaries increased as the energy of primary protons attenuated. Little change was seen in either total differential or integral LET spectra as a function of shielding depth, indicating that the increase in cross section with decreasing proton energy affected mostly the shorter range secondary components. Similarity in the slopes of LET spectra from ground-based proton exposures and the A0015 LET spectra showed that modeling of a monoenergetic proton beam transported through a 1-D geometry was a useful first step in modeling the production of secondary particles by trapped protons in the SAA.  相似文献   


17.
The samples of CR-39(DOP) and SR-90 polymer track detectors have been exposed to -particles from 241Am source in an exposure unit. The temperature of the detectors during irradiation has been varied from −30°C to 70°C. These exposed samples have been etched in 6.25 N NaOH solution at 60°C for various etching times. The variation of sensitivity of these detectors as a function of registration temperature has been studied. It has been observed that at the fixed registration temperature, the sensitivity of SR-90 is more than CR-39(DOP) polymer track detector. However, the enhancement in sensitivity with the decrease in registration temperature is more pronounced in case of CR-39(DOP) than SR-90.  相似文献   

18.
In the present paper the sensitivity V of plastic nuclear track detectors CR-39 to the space radiation, accelerated heavy ions in wide LET range and α-particles is studied. Different approaches for V evaluation are considered and compared. Main attention is given to the method that is appropriate for the measurement of short range heavy secondaries of space radiation. Finally, the experimental verification of the designed V function is carried out via simulation of the secondaries with low energy α-particles in the vicinity of the Bragg peak.  相似文献   

19.
A review was given for our recent studies on the latent tracks in CR-39 nuclear track detector. The radial size of track core has been determined through UV spectral measurements combined to the model of track overlapping and by AFM observations of slightly etched detectors. The track core radius was found to be about a few nano-meters and almost proportional to the cubic root of stopping power. As a control study, the etching properties of CR-39, irradiated by low-LET radiation, has been examined. The observed depth dependence and dose-rate dependence of the bulk etch rate of the irradiated CR-39 were explained that the damage formation process was governed by the reaction between the radiation induced radicals and the oxygen supplied from the air. This indicated that latent tracks in CR-39 are produced through local radiation induced oxidation process along the ion paths. Studies on vibration spectra, near-IR, FT-IR and Raman spectra, of CR-39 have also been carried out to estimate the chemical structure of the latent tracks. The creation of OH group in irradiated CR-39 has been confirmed.  相似文献   

20.
Recent concerns regarding the effects of the cosmic radiation field at aircraft altitudes on aircrew have resulted in a renewed interest in detailed measurements of the neutral and charged particle components in the atmosphere. CR-39 nuclear track detectors have been employed on a number of subsonic and supersonic aircraft to measure charge spectra and LET spectra at aircraft altitudes. These detectors are ideal for long term exposures required for these studies and their passive nature makes them suitable for an environment where interference with flight instrumentation could be a problem. We report here on measurements and analysis of short range tracks which were produced by high LET particles generated mainly by neutron interactions at aviation altitudes. In order to test the overall validity of the technique measurements were also carried out at the CERN-CEC field which simulates the radiation field at aviation altitudes and good agreement was found with dose values obtained using mainly heavy ion calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号