首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow of a viscoelastic liquid driven by the steadily rotating bottom cover of a cylindrical cup is investigated. The flow field and the shape of the free surface are determined at the lowest significant orders of the regular domain perturbation in terms of the angular velocity of the bottom cap. The meridional field superposed on a primary azimuthal field shows a structure of multiple cells. The velocity field and the shape of the free surface are strongly effected by the cylinder aspect ratio and the elasticity of the liquid. The use of this flow configuration as a free surface rheometer to determine the first two Rivlin-Ericksen constants is shown to be promising.Nomenclature R, ,Z Coordinates in the physical domain D - , , Coordinates in the rest stateD 0 - r, ,z Dimensionless coordinates in the rest stateD 0 - Angular velocity - Zero shear viscosity - Surface tension coefficient - Density - Dimensionless surface tension parameter - 1, 2 The first two Rivlin-Ericksen constants - Stream function - Dimensionless second order meridional stream function - * Dimensionless second normal stress function - 2 Dimensionless sum of the first and second normal stress functions - N 1,N 2 The first and second normal stress functions - n Unit normal vector - D Stretching tensor - A n nth order Rivlin-Ericksen tensor - S Extra-stress - u Velocity field - U Dimensionless second order meridional velocity field - V Dimensionless first order azimuthal velocity field - p Pressure - Modified pressure field - P Dimensionless second order pressure field - J Mean curvature - a Cylinder radius - d Liquid depth at rest - D Dimensionless liquid depth at rest - h Free surface height - H Dimensionless free surface height at the second order  相似文献   

2.
Dynamic material functions of polymeric systems are calculated via a defect-diffusion model. The random motion of defects is modelled by a fractaltime stochastic process. It is shown that the dynamic functions of polymeric solutions can be approximated by the defect-diffusion process of the mixed type. The relaxation modulus of Kohlrausch type is obtained for a fractal-time defect-diffusion process, and it is shown that this modulus is capable of portraying the dynamic behavior of typical viscoelastic solutions.The Fourier transforms of the Kohlrausch function are calculated to obtain and. A three-parameter model for and is compared with the previous calculations. Experimental measurements for five polymer solutions are compared with model predictions. D rate of deformation tensor - G(t) mechanical relaxation modulus - H relaxation spectrum - I(t) flux of defects - P n (s) probability of finding a walker ats aftern-steps - P generating function ofP n (s) - s(t) fraction of surviving defects - , () gamma function (incomplete) - 0 zero shear viscosity - * () complex viscosity - frequency - t n n-th moment - F[] Fourier transform - f * (u) Laplace transform off(t) - , components of * - G f, f * fractional model - G 3, 3 * three parameter model - complex conjugate ofz - material time derivative ofD  相似文献   

3.
In the thermally developing region, d yy /dx| y=h varies along the flow direction x, where yy denotes the component of stress normal to the y-plane; y = ±h at the die walls. A finite element method for two-dimensional Newtonian flow in a parallel slit was used to obtain an equation relating d yy /dx/ y=h and the wall shear stress 0 at the inlet; isothermal slit walls were used for the calculation and the inlet liquid temperature T0 was assumed to be equal to the wall temperature. For a temperature-viscosity relation /0 = [1+(T–T0]–1, a simple expression [(hd yy /dx/ y=h )/ w0] = 1–[1-F c(Na)] [M()+P(Pr) ·Q(Gz –1)] was found to hold over the practical range of parameters involved, where Na, Gz, and Pr denote the Nahme-Griffith number, Graetz number, and Prandtl number; is a dimensionless variable which depends on Na and Gz. An order-of-magnitude analysis for momentum and energy equations supports the validity of this expression. The function F c(Na) was obtained from an analytical solution for thermally developed flow; F c(Na) = 1 for isothermal flow. M(), P(Pr), and Q(Gz) were obtained by fitting numerical results with simple equations. The wall shear rate at the inlet can be calculated from the flow rate Q using the isothermal equation.Notation x,y Cartesian coordinates (Fig. 2) - , dimensionless spatial variables [Eq. (16)] - dimensionless variable, : = Gz(x)–1 - dimensionless variable [Eq. (28)] - t,t * time, dimensionless time [Eq. (16)] - , velocity vector, dimensionless velocity vector - x , velocity in x-direction, dimensionless velocity - y , velocity in y-direction, dimensionless velocity - V average velocity in x-direction - yy , * normal stress on y-planes, dimensionless normal stress - shear stress on y-planes acting in x-direction - w , w * value of shear stress stress at the wall, dimensionless wall shear stress - w0, w0 * wall shear stress at the inlet, dimensionless variable - , * rate-of-strain tensor, dimensionless tensor - wall shear rate, wall shear rate at the inlet - Q flow rate - T, T 0, temperature, temperature at the wall and at the inlet, dimensionless temperature - h, w half the die height, width of the die - l,L the distance between the inlet and the slot region, total die length - T 2, T 3, T 4 pressure transducers in the High Shear Rate Viscometer (HSRV) (Fig. 1) - P, P2, P3 pressure, liquid pressures applied to T 2 and T 3 - , 0, * viscosity, viscosity at T = T 0, dimensionless viscosity - viscosity-temperature coefficient [Eq. (8)] - k thermal conductivity - C p specific heat at constant pressure - Re Reynolds number - Na Nahme-Griffith number - Gz Graetz number - Pr Prandtl number  相似文献   

4.
Response of an elastic Bingham fluid to oscillatory shear   总被引:1,自引:0,他引:1  
The response of an elastic Bingham fluid to oscillatory strain has been modeled and compared with experiments on an oil-in-water emulsion. The newly developed model includes elastic solid deformation below the yield stress (or strain), and Newtonian flow above the yield stress. In sinusoidal oscillatory deformations at low strain amplitudes the stress response is sinusoidal and in phase with the strain. At large strain amplitudes, above the yield stress, the stress response is non-linear and is out of phase with strain because of the storage and release of elastic recoverable strain. In oscillatory deformation between parallel disks the non-uniform strain in the radial direction causes the location of the yield surface to move in-and-out during each oscillation. The radial location of the yield surface is calculated and the resulting torque on the stationary disk is determined. Torque waveforms are calculated for various strains and frequencies and compared to experiments on a model oil-in-water emulsion. Model parameters are evaluated independently: the elastic modulus of the emulsion is determined from data at low strains, the yield strain is determined from the phase shift between torque and strain, and the Bingham viscosity is determined from the frequency dependence of the torque at high strains. Using these parameters the torque waveforms are predicted quantitatively for all strains and frequencies. In accord with the model predictions the phase shift is found to depend on strain but to be independent of frequency.Notation A plate strain amplitude (parallel plates) - A R plate strain amplitude at disk edge (parallel disks) - G elastic modulus - m torque (parallel disks) - M normalized torque (parallel disks) = 2m/R 30 - N ratio of viscous to elastic stresses (parallel plates) =µ A/ 0 ratio of viscous to elastic stresses (parallel disks) =µ A R/0 - r normalized radial position (parallel disks) =r/R - r radial position (parallel disks) - R disk radius (parallel disks) - t normalized time = t — /2 - t time - E elastic strain - P plate strain (displacement of top plate or disk divided by distance between plates or disks) - PR plate strain at disk edge (parallel disks) - 0 yield strain - E normalized elastic strain = E/0 - P normalized plate strain = P/0 - PR normalized plate strain at disk edge (parallel disks) = PR/0 - 0 normalized plate strain amplitude (parallel plates) =A/ 0 — normalized plate strain amplitude at disk edge (parallel disks) =A R/0 - phase shift between P andT (parallel plates) — phase shift between PR andM (parallel disks) - µ Bingham viscosity - stress - 0 yield stress - T normalized stress =/ 0 - frequency  相似文献   

5.
The stability of the laminar helical flow of pseudoplastic liquids has been investigated with an indirect method consisting in the measurement of the rate of mass transfer at the surface of the inner rotating cylinder. The experiments have been carried out for different values of the geometric parameter = R 1/R 2 (the radius ratio) in the range of small values of the Reynolds number,Re < 200. Water solutions of CMC and MC have been used as pseudoplastic liquids obeying the power law model. The results have been correlated with the Taylor and Reynolds numbers defined with the aid of the mean viscosity value. The stability limit of the Couette flow is described by a functional dependence of the modified critical Taylor number (including geometric factor) on the flow indexn. This dependence, general for pseudoplastic liquids obeying the power law model, is close to the previous theoretical predictions and displays destabilizing influence of pseudoplasticity on the rotational motion. Beyond the initial range of the Reynolds numbers values (Re>20), the stability of the helical flow is not affected considerably by the pseudoplastic properties of liquids. In the range of the monotonic stabilization of the helical flow the stability limit is described by a general dependence of the modified Taylor number on the Reynolds number. The dependence is general for pseudoplastic as well as Newtonian liquids.Nomenclature C i concentration of reaction ions, kmol/m3 - d = R 2R 1 gap width, m - F M () Meksyn's geometric factor (Eq. (1)) - F 0 Faraday constant, C/kmol - i l density of limit current, A/m3 - k c mass transfer coefficient, m/s - n flow index - R 1,R 2 inner, outer radius of the gap, m - Re = V m ·2d·/µ m Reynolds number - Ta c = c ·d3/2·R 1 1/2 ·/µ m Taylor number - Z i number of electrons involved in electrochemical reaction - = R 1/R 2 radius ratio - µ apparent viscosity (local), Ns/m2 - µ m mean apparent viscosity value (Eq. (3)), Ns/m2 - µ i apparent viscosity value at a surface of the inner cylinder, Ns/m2 - density, kg/m3 - c angular velocity of the inner cylinder (critical value), 1/s  相似文献   

6.
The effect of temperature on the steady-shear viscosity of two base emulsions (water-in-creosote (w/o) and creosote-in-water (o/w)) and a pigment emulsified creosote (PEC) was investigated. The PEC is a water-in-creosote emulsion which contains also a solid, micronised pigment, and is used industrially as a wood preservative. All three emulsions exhibited shear thinning characteristics at different temperatures. The viscosity-shear rate relationships follow a modified Quemada model. A temperature-superposition method using the reduced variables / and t c was applied to yield a master plot for each of these emulsions at different temperatures. The effect of creosote concentration on the viscosity of four other o/w emulsions at different temperatures was also studied. The same reduced variables were able to produce a temperature-concentration superposition plot for all of the o/w emulsion results.The effective (average) radius of the globules (dispersed phase) was found to increase with increasing temperature for the base w/o and the PEC emulsion. The collision theory could be used to explain the increase in the droplet size. However, while little overall variation in globule size was observed for the o/w emulsions, microscopic observation indicated an increase in the proportion of large diameter droplets with temperature at the highest creosote concentration (60%). A creaming effect (phase concentration) was observed with these emulsions at higher temperatures, precluding an accurate estimate of droplet size based on collision theory.Seconded from Koppers Coal Tar Products, Newcastle, N.S.W., Australia.  相似文献   

7.
Suspensions consisting of particles of colloidal dimensions have been reported to form connected structures. When attractive forces act between particles in suspension they may flocculate and, depending on particle concentration, shear history and other parameters, flocs may build-up in a three-dimensional network which spans the suspension sample. In this paper a floc network model is introduced to interpret the elastic behavior of flocculated suspensions at small deformations. Elastic percolation concepts are used to explain the variation of the elastic modulus with concentration. Data taken from the suspension rheology literature, and new results with suspensions of magnetic -Fe2O3 and non-magnetic -Fe2O3 particles in mineral oil are interpreted with the model proposed.Non-zero elastic modulus appeared at threshold particle concentrations of about 0.7 vol.% and 0.4 vol.% of the magnetic and non-magnetic suspensions, respectively. The difference is attributed to the denser flocs formed by magnetic suspensions. The volume fraction of particles in the flocs was estimated from the threshold particle concentration by transforming this concentration into a critical volume concentration of flocs, and identifying this critical concentration with the theoretical percolation threshold of three-dimensional networks of different coordination numbers. The results obtained indicate that the flocs are low-density structures, in agreement with cryo-scanning electron micrographs. Above the critical concentration the dynamic elastic modulus G was found to follow a scaling law of the type G ( f - f c ) f , where f is the volume fraction of flocs in suspension, and f c is its threshold value. For magnetic suspensions the exponent f was found to rise from a low value of about 1.0 to a value of 2.26 as particle concentration was increased. For the non-magnetic a similar change in f was observed; f changed from 0.95 to 3.6. Two other flocculated suspension systems taken from the literature showed a similar change in exponent. This suggests the possibility of a change in the mechanism of stress transport in the suspension as concentration increases, i.e., from a floc-floc bond-bending force mechanism to a rigidity percolation mechanism.  相似文献   

8.
A mathematical model was developed to describe the behavior of Herschel-Bulkley fluids in a back extrusion (annular pumping) device. A technique was also developed to determine the rheological properties (yield stress, flow behavior index, and consistency coefficient) of these fluids. Mathematical terms were expressed in four dimensionless terms, and graphical aids and tables were prepared to facilitate the handling of the expressions.Nomenclature a radius of the plunger, m - dv/dr shear rate, s–1 - F force applied to the plunger, N - F b buoyancy force, N - F cb force corrected for buoyancy, N - F T recorded force just before the plunger is stopped, N - F Te recorded force after the plunger is stopped, N - g acceleration due to gravity, m/s2 - H(t) momentary height between plunger and container bottom, m - K a/R, dimensionless - L length of annular region, m - L(t) depth of plunger penetration, m - n flow behavior index, dimensionless - p static pressure, Pa - P L pressure in excess of hydrostatic pressure at the plunger base, Pa - p 0 pressure at entrance to annulus, Pa - P pressure drop per unit of length, Pa/m - Q total volumetric flow rate through the annulus, m3/s - r radial coordinate, measured from common axis of cylinder forming annulus, m - R radius of outer cylinder of annulus, m - s reciprocal of n, dimensionless - t time, s - T dimensionless shear stress, defined in Eq. (3) - T 0 dimensionless yield stress, defined in Eq. (4) - T w dimensionless shear stress at the plunger wall - p velocity of plunger, m/s - velocity, m/s - mass density of fluid, kg/m3 - Newtonian viscosity, Pa s - P p 0 p L , Pa - consistency coefficient, Pa sn - value of where shear stress is zero - , + limits of the plug flow region (Fig. 1) - r/R - shear stress, Pa - y yield stress, Pa - w shear stress at the plunger wall, Pa - dimensionless flow rate defined in Eq. (24) - dimensionless velocity defined by Eq. (5) - , + dimensionless velocity outside the plug flow region - max dimensionless maximum velocity in the plug flow region - p dimensionless velocity at the plunger wall  相似文献   

9.
The swelling of myofibrils extracted from white bovine muscle was followed by measuring their suspension rheology. Swelling of the myofibril with increasing pH and ionic strength was accompanied by an increase in both the steady shear viscosity of the suspension and the dynamic viscoelastic properties. Swelling was continuously monitored by measuringG while the ionic strength of the suspension was being changed by dialysis. The relationship between the degree of swelling and the rheological parameters is complicated because myofibrils are rodshaped and swell radially and therefore swelling results in a change in shape. To allow for this an attempt was made to generalize the data by plotting viscosity andG againstcS m , wherec is the protein concentration in the suspension,S is the swollen volume of the myofibrils per weight of protein, and ø m is the maximum packing fraction.The best fit to the data was represented by the equations sp = 1.05 (cS/ m – 0.84)1.23 Pa · sG = 8.78 (cS/ m – 0.67)2.22 N m–2. The scatter was greatest forG, possibly because at low degrees of shear the myofibrils were associated and this was confirmed by optical microscopy. Pronounced non-Newtonian behavior was observed and it was suggested that this was due to the disruption of aggregate structures, although at low concentration, orientation of the rods in the shear field may also be important.  相似文献   

10.
By means of a cone and plate rheometer the relaxation of the shear stress and the first normal stress difference in polymer liquids upon cessation of a constant shear rate were examined. The experiments were conducted mostly in a high shear rate region of relevance for the processing of these materials. The relaxation behavior at these shear rates can only be measured accurately under extremely precise specifications of the rheometer. To determine under which conditions the integral normal thrust is a convenient measure for the relaxing local first normal stress difference the radial distribution of the pressure in the shear gap was measured. The shape of relaxation of both the shear stress and the first normal stress difference could be closely approximated for the entire measured shear rate and time range by a two parameter statistical function. In the range of measured shear rates, one of the parameters, the standard deviationS, is equal for the shear and the normal stress, and is independent of the shear rate within the limit of experimental error. The second parameter, the mean relaxation timet 50, of the shear stress andt 50, of the first normal stress difference, can be calculated approximately from the viscosity function and only a single relaxation experiment.  相似文献   

11.
A simple method for correction of the wall-slip effect in a Couette rheometer was derived. The method requires only two series of measurements (two flow curves) performed in two measuring sets of any dimensions, and therefore it may be applied for the results obtained in each rheometer with a standard cup and bob set. The method was checked for experimental data and also verified theoretically for a hypothetical liquid. H height of cylinder - M torque - r distance from axis - R i ,R 0 radius of inner and outer cylinder - R m average radius defined by Eq. (7) - u slip velocity - shear rate - shear rate for no-slip conditions - Newtonian viscosity - angular speed - angular speed of the rotating cylinder  相似文献   

12.
The stability of a laminar helical flow of pseudoplastic liquids in an annular gap with a rotating inner cylinder is investigated theoretically. The analysis is carried out under the assumption of a torroidal form of the secondary flow (torroidal Taylor vortices) for the narrow gap geometry. The power law model has been applied to describe the pseudoplasticity of liquids. The problem of the stability has been formulated with the aid of the method of small disturbances, and solved using the Galerkin method. In order to describe the stability limit the Reynolds and Taylor numbers defined with the aid of the mean viscosity value have been introduced. It has been found that pseudoplasticity has a considerably destabilizing influence on the Couette motion as well as on the helical flow in the initial range of the Reynolds number values (Re<30). A decrease of the flow index value,n, is accompanied by a decrease of the critical value of the Taylor number. This destabilizing effect of pseudoplasticity vanishes in the range of the larger values of the Reynolds number. In the rangeRe>30, the stability limit of the flow of pseudoplastic liquids can be described by a general dependence of the critical valueTa c onRe, which is consistent with results obtained for the case of Newtonian fluids. a frequency number (Eq. (27)), 1/s - b wave number (Eq. (27)), 1/m - B = M/N parameter - d = R 2R 1 gap width, m - f(y, B, k) function of viscosity distribution (Eq. (7)) - f 0 (x) function of viscosity distribution (narrow gap Eq. (35)) - F(x) = V(x)/V m dimensionless distribution of axial flow velocity - G(x) = U(x) i dimensionless distribution of angular flow velocity - K consistency coefficient, N sn/m2 - M = (P/L)R 2 parameter of the stress field (Eq. (1)), N/m2 - M 0 torque per unit length, N - n flow index - N = M 0/(2R 2 2 ) parameter of the stress field (Eq. (1)), N/m2 - p = 1/2n–1/2 parameter - pressure disturbance amplitude, N/m2 - p pressure disturbance, N/m2 - (P/L) pressure drop per unit length of the gap, N/m2 - r radial coordinate, m - r m location of the maximum value of the axial velocity, m - R 1,R 2 inner, outer radius of the annulus, m - Re = V m 2d/ m Reynolds number - S = (P/L · d/N) parameteer of the stress field (narrow gap) - t time, s - Ta = i d 3/2 R 1 1/2 / m Taylor number - U tangential velocity, m/s - U i tangential velocity at the surface of the inner cylinder, m/s - V axial velocity, m/s - V m mean axial velocity, m/s - V disturbance vector of velocity field, m/s - amplitude of theV k -disturbance, m/s - X, Y, Z functions in Eqs. (36–38) - y = r/R 2 dimensionless radial coordinate - x = (r—(R 1+R 2)/2)d radial coordinate (narrow gap) - L 1 L 4 linear operators in Eqs. (36–38) - = ad/V m dimensionless frequency number - = b·d dimensionless wave number - component of the rate of strain tensor, 1/s - component of the rate of strain tensor corresponding to the disturbance, 1/s - = R 1/R 2 radius ratio - apparent viscosity, Ns/m2 - 0 apparent viscosity in the main flow, Ns/m2 - µ disturbance of the apparent viscosity, Ns/m2 - µ m mean apparent viscosity, Ns/m2 - density, kg/m3 - ij component of the stress tensor, N/m2 - angular velocity, rad/s - i angular velocity of the inner cylinder, rad/s  相似文献   

13.
An analytical study was made to examine the effect of vascular deformability on the pulsatile blood flow in arterioles through the use of a suitable mathematical model. The blood in arterioles is assumed to consist of two layers — both Newtonian but with differing coefficients of viscosity. The flow characteristics of blood as well as the resistance to flow have been determined using the numerical computations of the resulting expressions. The applicability of the model is illustrated using numerical results based on the existing experimental data. r, z coordinate system - u, axial/longitudinal velocity component of blood - p pressure exerted by blood - b density of blood - µ viscosity of blood - t time - , displacement components of the vessel wall - T t0,T 0 known initial stresses - density of the wall material - h thickness of the vessel wall - T t,T stress components of the vessel - K l,K r components of the spring coefficient - C l,C r components of the friction coefficient - M a additional mass of the mechanical model - r 1 outer radius of the vessel - thickness of the plasma layer - r 1 inner radius of the vessel - circular frequency of the forced oscillation - k wave number - E 0,E t, , t material parameters for the arterial segment - µ p viscosity of the plasma layer - Q total flux - Q p flux across the plasma zone - Q h flux across the core region - Q mean flow rate - resistance to flow - P pressure difference - l length of the segment of the vessel  相似文献   

14.
Superposition of oscillatory shear imposed from the boundary and through pressure gradient oscillations and simple shear is investigated. The integral fluid with fading memory shows flow enhancement effects due to the nonlinear structure. Closed-form expressions for the change in the mass transport rate are given at the lowest significant order in the perturbation algorithm. The elasticity of the liquid plays as important a role in determining the enhancement as does the shear dependent viscosity. Coupling of shear thinning and elasticity may produce sharp increases in the flow rate. The interaction of oscillatory shear components may generate a steady flow, either longitudinal or orthogonal, resulting in increases in flow rates akin to resonance, and due to frequency cancellation, even in the absence of a mean gradient. An algorithm to determine the constitutive functions of the integral fluid of order three is outlined.Nomenclature A n Rivlin-Ericksen tensor of order . - A k Non-oscillatory component of the first order linear viscoelastic oscillatory velocity field induced by the kth wave in the pressure gradient - d Half the gap between the plates - e x, e z Unit vectors in the longitudinal and orthogonal directions, respectively - G(s) Relaxation modulus - G History of the deformation - Stress response functional - I() Enhancement defined as the ratio of the frequency dependent part of the discharge to the frequencyindependent part of it at the third order - I *() Enhancement defined as the ratio of the increase in discharge due to oscillations to the total discharge without the oscillations - k Power index in the relaxation modulus G(s) - k i –1 Relaxation times in the Maxwell representation of the quadratic shear relaxation modulus (s 1, s 2) - m i –1, n i –1 Relaxation times in the Maxwell representations of the constitutive functions 1(s 1,s 2,s 3) and 4 (s 1, s 2,s 3), respectively - P Constant longitudinal pressure gradient - p Pressure field - mx ,(3) nz ,(3) Mean volume transport rates at the third order in the longitudinal and orthogonal directions, respectively - 0,(3), 1,(3) Frequency independent and dependent volume transport rates, respectively, at the third order - s = t- Difference between present and past times t and   相似文献   

15.
Finite difference solutions have been obtained by the perturbation method to investigate the influence of shear thinning and elasticity on the flow around an inclined circular cylinder of finite length in a uniform flow. In this numerical analysis a generalized upper-convected Maxwell model, in which the viscosity changes according to the Cross model, has been used.The local flow over the cylinder is only slightly deflected. However, in the wake flow behind the cylinder the particle path is remarkably influenced by the axial flow and rapidly flows up parallel to the cylinder's axis. Then it gradually rejoins direction of the incoming flow. It is found that viscoelastic fluids are prone to flow axially in the vicinity of the cylinder. The numerical predictions generally agree with the flow visualization results.The numerical solutions also demonstrate that elasticity has a strong effect on the velocity profile especially around both ends of the cylinder; elasticity increases the asymmetric profiles of both circumferential velocity and axial velocity with respect to equal to 90° and decreases a difference in the circumferential velocity between the windward end and the leeward end.For non-Newtonian fluids, the length of the wake flow is influenced by not only the Reynolds number but also the cylinder diameter and it is larger for the cylinder with the smaller diameter at the same Reynolds number.Partly presented at the 9th Australasian Fluid Mechanics Conference, University of Auckland, New Zealand, 8–12 December, 1986  相似文献   

16.
An analysis of particle orientation in a dilute suspension of rodlike particles in a second-order fluid was performed to examine the effects of the elasticity of the fluid and of weak Brownian diffusion of the particle on its orientation. Distributions of particle orientation under a simple shear flow with rate of shearg have been obtained as a function of a single nondimensional parameter, * =/r e 2 (D/g), which combines the effects of the particle aspect ratior e , the weak fluid elasticity, and the weak Brownian rotation diffusion coefficientD of the particle. In the limit of larger e , when the fluid elasticity is strong enough to overcome the rotational diffusion effect on the particle motion, most of the particles will orient close to the vorticity axis. A new shear-thinning mechanism of the shear viscosity of such systems is predicted by the theory.  相似文献   

17.
The viscosity of pure molten TNT has been investigated over the temperature range 82.0°–95.4°C. The temperature dependence of viscosity was found to be best represented by a relation of the type = A e B/T whereA = 0.000541,B = 3570, is the viscosity in mPa s andT is the temperature in Kelvin. Earlier work, which suggests an inverse temperature dependence of the flow activation energy, is shown to include an error in the published equation for the temperature dependence of the viscosity of molten TNT.  相似文献   

18.
A hot-film probe has been used to measure slip of high-density polyethylene flowing through a conduit with a rectangular cross section. A transition from no slip to a stick-slip condition has been observed and associated with irregular extrudate shape. Appreciable extrudate roughness was initiated at the same flow rate as that at which the relationship between Nusselt number and Péclet number for heat transfer from the probe departed from the behavior expected for a no-slip condition at the conduit wall. A 1 constant defined by eq. (A3) - C dimensionless group used in eq. (7) - C p heat capacity - D constant in eq. (13) - f u s/u - f lin defined by eq. (A6) - G storage modulus - G loss modulus - k thermal conductivity - L length of hot film in thex-direction - L eff effective length of large probe found from eq. (A3) - Nu L Nusselt number, defined for a lengthL by eq. (2) - (Nu L)0 value ofNu L atPe = 0 (eq. (A 1)) - Pe Péclet number,uL/ - Pe 0 Péclet number in slip flow, eq. (6) - Pe 1 Péclet number in shear flow, eq. (4) - q L average heat flux over hot film of lengthL - R i resistances defined by figure 8 - R AB correlation coefficient defined by eq. (14) for signalsA andB - T temperature - T s temperature of probe surface - T ambient temperature - T T sT - u average velocity - u s slip velocity - V b voltage indicated in figure 8 - W probe dimension (figure 6) - x distance in flow direction (figure 1) - y distance perpendicular to flow direction (figure 1) - thermal diffusivity,k/C p - wall shear rate - 5% thickness of lubricating layer during probe calibration for introduction of an error no greater than 5%; see Appendix I - * complex viscosity - density - time - c critical shear stress, eq. (13) - w wall shear stress - frequency characterizing extrudate distortion (figures 12 and 13), or frequency of oscillation during rheometric characterization (figures 18–20) - * quantity obtained from normalized Nusselt number, eq. (A1), or complex viscosity * - A actual (small) probe (see Appendix I) - M model (large) probe (see Appendix I)  相似文献   

19.
A theory proposed by the author as representative of the flow of a general suspension contains three interaction forces, f, S and N. For a quasi-concentrated suspension and for a dilute suspension, N and S, N are omitted, respectively. For the latter special case, we treat diffusion of a fluid through an elastic solid. For a quasi-concentrated suspension, we show that F and S depend on the gradient of the motion gradient. We demonstrate the existence of interesting phenomena: non-simple behavior, dissipative effects, generalized lift and drag forces.Presented at the second conference Recent Developments in Structured Continua, May 23 – 25, 1990, in Sherbrooke, Québec, Canada.  相似文献   

20.
Filled polymeric liquids often exhibit apparent yielding and shear thinning in steady shear flow. Yielding results from non-hydrodynamic particle—particle interactions, while shear thinning results from the non-Newtonian behavior of the polymer melt. A simple equation, based on the linear superposition of two relaxation mechanisms, is proposed to describe the viscosity of filled polymer melts over a wide range of shear rates and filler volume fraction.The viscosity is written as the sum of two generalized Newtonian liquid models. The resulting equation can describe a wide range of shear-thinning viscosity curves, and a hierarchy of equations is obtained by simplifying the general case. Some of the parameters in the equation can be related to the properties of the unfilled liquid and the solid volume fraction. One adjustable parameter, a yield stress, is necessary to describe the viscosity at low rates where non-hydrodynamic particle—particle interaction dominate. At high shear rates, where particle—particle interactions are dominated by interparticle hydrodynamics, no adjustable parameters are necessary. A single equation describes both the high and low shear rate regimes. Predictions of the equation closely fit published viscosity data of filled polymer melts. n power-law index - n 1,n 2 power-law index of first (second) term - shear rate - steady shear viscosity - 0 zero-shear rate viscosity - 0, 1, 0, 2 zero-shear rate viscosity of first (second) term - time constant - 1, 2 time constant of first (second) term - µ r relative viscosity of filled Newtonian liquid - 0 yield stress - ø solid volume fraction - ø m maximum solid volume fraction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号