共查询到19条相似文献,搜索用时 78 毫秒
1.
钙钛矿/硅叠层太阳电池可以充分利用太阳光谱,提高光电转换效率.平面硅异质结太阳电池可以作为叠层电池的底电池,其性能直接影响叠层电池的性能表现.采用传统反应热蒸发技术,在低温(170 ℃)条件下制备了掺锡氧化铟薄膜,并在170 ℃的氧气氛围下后退火处理,对ITO薄膜的特性进行了详细的表征和分析.结果表明:后退火工艺改善了ITO的结晶特性,使得材料的光学特性和电学特性得到明显提高,将其应用于平面硅异质结太阳电池,短路电流密度得到极大提高,尤其红外光响应改善明显.引入MgF2薄膜作为减反射层,进一步增强了电池的光响应,转换效率达到19.04;. 相似文献
2.
3.
硅基铝掺杂氧化锌异质结太阳能电池的制备与性能研究 总被引:1,自引:1,他引:0
本文以绒面处理的P型硅(111)为衬底,利用磁控溅射、蒸发镀膜和热氧化等技术制备Al/P(cryst-Si: H)/N(Al-Doped ZnO)/ITO结构的异质结太阳能电池,探讨ZnO薄膜的表面形貌、晶体结构以及衬底的可见光反射率等因素对其光电转化性能的影响.扫描电子显微镜分析显示,氧化锌薄膜是具有大量晶界的多孔隙结构.X 射线衍射测试表明,氧化锌薄膜为六方纤锌矿晶体结构.太阳能电池的I-V特性测试显示,在绒面处理的硅基上制备的ZnO异质结太阳能电池具有较好的光伏特性,开路电压VOC为328 mV,短路电流密度JSC 为5.83 mA/cm2,填充因子FF为0.602. 相似文献
4.
薄层a-Si∶H钝化技术对于提高硅异质结太阳能电池的效率至关重要,通常有三类工艺可显著改善a-Si∶H薄膜的钝化效果:晶硅表面湿化学处理(薄膜沉积前);氢等离子体处理(薄膜沉积过程中);后退火处理(薄膜沉积后).该论文基于等离子增强型化学气相沉积系统,采用氢等离子处理和后退火处理改善a-Si∶ H/c-Si界面的钝化效果,样品的有效少数载流子寿命最高达到1 ms,并研究了射频功率密度、腔体压力、氢气流量等工艺参数对钝化效果的影响;采用光发射谱、台阶仪等对氢等离子体处理所涉及的物理过程进行研究,得出该工艺对a-Si∶H薄膜具有刻蚀作用;根据钝化效果和刻蚀速率的关系,得出低刻蚀速率由于给予薄膜充足的时间进行结构弛豫或重构,显著改善钝化效果;基于快速热退火方法进一步改善钝化效果,采用傅里叶变换红外光谱对a-Si∶H薄膜的钝化机理进行研究,并基于化学退火模型进行讨论;采用透射电镜研究了a-Si∶ H/c-Si界面的微结构,并没有观测到影响钝化效果的外延生长. 相似文献
5.
因晶体硅是间接带隙半导体材料,其较低的吸收系数限制了对近红外波段入射光的吸收.为此,引入金属有机化学气相沉积(MOCVD)技术制备的ZnO薄膜,并通过改变掺杂流量和沉积时间调节ZnO∶ B(BZO)薄膜的光学和电学性能.将BZO薄膜用于硅异质结(SHJ)太阳电池的背反射电极,相比于传统结构,电池的反射率和外部量子效率在近红外波段得到显著改善.为进一步解释外量子效率增加的原因,在四甲基氢氧化铵(TMAH)湿法制绒的硅衬底上沉积BZO薄膜,得到了新型微纳米嵌套结构,并对其光吸收进行了测试分析. 相似文献
6.
HIT(Heterojunction with intrinsic thin-layer)太阳能电池,即具有本征非晶硅薄层的异质结太阳能电池,利用了非晶硅薄膜/单晶硅衬底的异质结结构,从而结合了单晶硅和非晶硅太阳能电池优良的特点.这种类型结构的电池可以在较低温度下(<250℃)制造,具有良好的光照稳定性和温度稳定性,成本低而且效率高,目前效率达到26.7;.文章简述了HIT太阳能电池的结构和工作原理,并且总结了HIT电池的研究和应用现状.除此之外,还分析了提高HIT太阳能电池效率的方法以及HIT电池广阔的应用前景和巨大的商业化潜力. 相似文献
7.
热光伏电池是当前研究的热点,目前同质结Ge电池的研究较为常见,而GaInP2/Ge异质结电池还未见相关报道.本文首先对比GaInPJGe异质结与GaInP2/Ge/Ge同质结的能带图,发现异质结界面处的阶跃势垒位于内建电场内部,以至于阶跃势垒不影响载流子输运,能提高器件的性能.然后通过MOCVD在P型Ge衬底上外延高质量、宽带隙的单晶GaInP2层,并进行TEM-EDX线性扫描、Ⅰ-Ⅴ测试,研究结果表明,利用MOCVD技术制备的GaInP2/Ge异质结界面陡峭且GaInP2并未向Ge内扩散;通过优化器件工艺4 cm2全面积电池效率最终达到5.18; (AM1.5,25℃).根据J-V曲线方程推算出串并联电阻(Rs、Rsh)、反向饱和电流密度(J0)和二极管品质因子(A)等参数,为电池性能的进一步提高获得主要的突破路径. 相似文献
8.
由载流子输运理论推出a-Si∶ H/c-Si异质结太阳电池的背接触势垒是其J-V曲线出现S-shape现象的原因之一,此时电池内部存在两个串联反偏的二极管,阻碍载流子输运.通过模拟计算验证该结论,发现硅基异质结太阳电池背接触产生的肖特基势垒高度存在最大临界值,高于此值则电池的开路电压、填充因子和转换效率会急剧衰减,而短路电流密度基本不变. 相似文献
9.
10.
退火温度和β-FeSi2薄膜厚度对n-β-FeSi2/p-Si异质结太阳电池的影响 总被引:2,自引:1,他引:1
本文采用室温直流磁控溅射Fe-Si组合靶的方法,并通过后续退火温度的优化得到了单一相高质量的β-FeSi2薄膜.结果表明,在本实验条件下得到的未掺杂的β-FeSi2薄膜在室温下是n型导电的,其电学特性存在一个退火温度的最优点:800 ℃.而且在这个最佳温度点上,在Si(111)衬底上外延得到的薄膜载流子迁移率比在Si(100)上高出了一倍多.在上述研究的基础上,采用p-Si(111)单晶片作为外延生长β-FeSi2薄膜的衬底,并通过退火温度和薄膜厚度的优化制备出了国内第一个n-β-FeSi2/p-Si异质结太阳电池,其Jsc=7.90 mA/cm2 ,Voc=0.21 V,FF=0.23,η=0.38;. 相似文献
11.
运用模拟软件AFORS-HET对TCO/a-Si∶ H(n)/a-Si∶ H(i)/c-Si(p)/Ag结构的异质结(HIT)太阳电池进行仿真,分析其光伏输出特性随发射层掺杂浓度、晶硅衬底掺杂浓度、透明导电氧化物薄膜(TCO)的选择以及TCO功函数的变化规律.结果显示,当发射层掺杂浓度大于1.0×1020 cm-3,晶硅衬底掺杂浓度大于1.2×1016 cm3,以ZnO为TCO层且ZnO的功函数低于4.4 eV时,电池的开路电压、短路电流密度、填充因子及电池转换效率达到最优值,光电转换效率最高达到19.18;. 相似文献
12.
13.
为提升n型叉指背接触(IBC)太阳电池的光电转换效率,采用丝网印刷硼浆和高温扩散的方式形成选择性发射极结构,研究了硼扩散和硼浆印刷工艺对电池发射极钝化性能和接触性能的影响。实验结果表明,在硼扩散沉积时间和退火时间一定的条件下,硼扩散通源(BBr3)流量为100 mL/min,沉积温度为830 ℃,退火温度为920 ℃时,发射极轻掺杂(p+)区域的隐开路电压达到710 mV,暗饱和电流密度为12.2 fA/cm2。发射极局部印刷硼浆湿重为220 mg时,经过高温硼扩散退火,重掺杂(p++)区域的隐开路电压保持在683 mV左右,该区域方块电阻仅46 Ω/□,金属接触电阻为2.3 mΩ·cm2. 采用该工艺方案制备的IBC电池最高光电转换效率达到24.40%,平均光电转换效率达到24.32%,相比现有IBC电池转换效率提升了0.28个百分点。 相似文献
14.
15.
16.
采用红外快速烧结炉制备了不同成分组成玻璃的多晶硅太阳电池,利用X射线扫描仪和扫描电子显微镜对电极的相结构及微观形貌进行了分析,采用NETZSCH STA 449C电流补偿型差示扫描仪测试玻璃粉的玻璃化转变温度,研究了不同成分组成的玻璃化转变温度对太阳电池Ag/Si接触界面之间微观结构和电学性能的影响.结果表明:玻璃化转变温度为346℃时,烧结的银电极致密度最高,Ag/Si之间的欧姆接触最紧密,重结晶在发射极上的银颗粒尺寸最大且数量最多,获得的光电转换效率达到了17.25;.因此,具有适当玻璃化转变温度的玻璃对太阳电池减反射层与硅发射极有着较好的润湿性,并对太阳电池的电学性能起着重要的影响. 相似文献
17.
采用美国宾州大学开发的AMPS(Analysis of Microelectronic and Photonic Structures)软件模拟了p/i界面缺陷态密度(Npt/i)和非晶孵化层厚度(d)对pin型氢化微晶硅(μc-Si:H)薄膜太阳电池性能的影响.结果表明:随着Npt/i的增大,电池的开路电压Voc和填充因子FF单调减小,短路电流Jsc基本不变;随着d的增大,Jsc和FF单调减小,Voc反而增大;Npt/i和d值的增大均会导致电池光电转换效率η下降.通过对电池内部的电场及能带的分析,对上述模拟结果进行了解释. 相似文献
18.
采用美国滨州大学研发的AMPS-1D软件,模拟了背场对TCO/a-Si∶ H(p+)/a-Si∶ H(i)/c-Si(n) /a-Si∶ H(i) /a-Si∶ H(n+)/TCO双面HIT异质结太阳电池光伏特性的影响.结果表明在背场掺杂浓度NB≥1×1018cm-3时,带隙在1.60~ 1.92 eV范围内的宽带隙薄膜硅材料比较适合作为双面HIT太阳电池的背场.模拟中还发现,背场n+层掺杂浓度对太阳电池性能的影响要受到该层隙间态密度的制约,隙间态密度越大,则对背场掺杂浓度的要求越高. 相似文献
19.
本文研究了pin型非晶硅(a-Si)太阳电池p/i界面掺碳缓冲层(C-buffer layer)沉积时间对电池效率和稳定性的影响.研究发现,随着掺碳缓冲层沉积时间的增加,太阳电池的初始效率有所增加,当沉积时间增加到约60s时,电池的初始效率达最大值,而后随着沉积时间的继续增加,电池效率下降.而在太阳电池的稳定性方面,当缓冲层沉积时间小于50s时,随着沉积时间的增加,电池衰退率增大;大于50s后,电池的衰退率又随沉积时间的增大而减小. 相似文献