首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The donor-acceptor pi-electron chromophore 5-{4-[2-(4,6-diamino-[1,3,5]triazin-2-yl)-vinyl]-benzylidene}-pyrimidine-2,4,6-trione (DTPT) was designed and synthesized. Triple H-bonding interactions between neighboring molecules direct self-assembled chromophore alignment in a head-to-tail orientation using a straightforward vapor phase deposition process. Angle-dependent SHG interference patterns and the quadratic dependence of the 532 nm light output intensity on the thickness of the DTPT films for glass substrates coated on both sides demonstrate high, reproducible film quality and uniformity. XRD also demonstrates long-range order in the film and yields a molecular tilt angle in good agreement with polarized SHG data, clearly showing that out-of-plane ordering of chromophore molecules has been achieved.  相似文献   

2.
New low‐temperature curable organic/inorganic hybrid polymers were designed and synthesized as gate dielectrics for organic thin‐film transistors (OTFTs). Allyl alcohols were introduced to polyhedral oligomeric silsesquioxane (POSS) via hydrosilyation to produce an alcohol‐functionalized POSS derivative (POSS‐OH). POSS‐OH was then reacted with hexamethoxymethylmelamine at carrying molar ratios at 80 °C in the presence of a catalytic amount of p‐toluenesulfonic acid to give highly cross‐linked network polymers (POSS‐MM). The prepared thin films were smooth and hard after the thermal cross‐linking reaction and had very low leakage currents (<10?8 A/cm2) with no significant absorption over the visible spectral range. Pentacene‐based OTFTs using the synthesized insulators as gate dielectric layers had higher hole mobilities (up to 0.36 cm2/Vs) than a device using thermally cross‐linked poly(vinyl phenol) and melamine as the gate dielectric layer (0.18 cm2/Vs). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3260–3268  相似文献   

3.
《Supramolecular Science》1997,4(1-2):155-162
Organic-based thin film transistors have been realized from various organic conjugated materials, which can be gathered into two categories, according to the mechanism describing charge transport. In conjugated polymers and amorphous materials, occurrence of a variable range hopping mechanism leads to a direct relationship between doping level, conductivity and carrier mobility, which explains the difficulty for achieving materials possessing, at the same time, a high mobility and a low conductivity. On the other hand, the trap-limited mechanism of charge transport in conjugated oligomers allows a distinct control of carrier mobility and conductivity. Carrier mobility in thin films of conjugated oligomers can be increased by lowering the concentration of grain boundaries, which can be readily achieved by imposing long range structural ordering of oligomer molecules. Thin films of oligomer with a liquid crystal-like structure have thus been realized, using a self-assembly approach, which presents a mobility close to that of a single crystal of this oligomer. On the other hand, conductivity of these oligomers can be decreased by controlling the purity of these materials. High mobility and low conductivity values can thus be achieved with conjugated oligomers, allowing the realization of organic thin-film transistors presenting characteristics close to those of amorphous-silicon based ones.  相似文献   

4.
Organic thin film transitors (TFTs) with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid), PEDOT:PSS, as the active layer and cross-linked, layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) multilayers as the gate dielectric layer were investigated. A combination of spectroscopic data and device performance characteristics was used to study the behavior of these TFT devices under a variety of controlled environmental test conditions. It was shown that depletion and recovery of the device can be induced to occur by a means that is consistent with the electrochemical oxidation and reduction of water contained in the film. In addition to acting as a reactant, moisture also acts as a plasticizer to control the mobility of other species contained in the film and thereby permits bistable operation of these devices. Raman spectroscopy was used to show that the observed device switching behavior is due to a change in the PEDOT doping level.  相似文献   

5.
A donor-acceptor polymer semiconductor, PDQT, comprising diketopyrrolopyrrole (DPP) and β-unsubstituted quaterthiophene (QT) for organic thin film transistors (OTFTs) is reported. This polymer forms ordered layer-by-layer lamellar packing with an edge-on orientation in thin films even without thermal annealing. The strong intermolecular interactions arising from the fused aromatic DPP moiety and the DPP-QT donor-acceptor interaction facilitate the spontaneous self-assembly of the polymer chains into close proximity and form a large π-π overlap, which are favorable for intermolecular charge hopping. The well-interconnected crystalline grains form efficient intergranular charge transport pathways. The desirable chemical, electronic, and morphological structures of PDQT bring about high hole mobility of up to 0.97 cm(2)/(V·s) in OTFTs with polymer thin films annealed at a mild temperature of 100 °C and similarly high mobility of 0.89 cm(2)/(V·s) for polymer thin films even without thermal annealing.  相似文献   

6.
We have developed a manufacturing process for organic thin-film transistors and organic complementary circuits in which a microcontact-printed phosphonic acid self-assembled monolayer is employed first as an etch resist to pattern aluminum gate electrodes by wet etching and then as the gate dielectric of the same device. To our knowledge, this is the first report of a printing process for electronic devices that combines the concepts of direct and indirect printing in the same printing step and for the same material by employing a transferred pattern both as an etch resist (indirect printing) and as a functional material as part of the final device (direct printing). Owing to the small thickness and the high quality of the monolayer gate dielectric, the transistors and circuits operate at a low voltage of 3 V.  相似文献   

7.
Self-assembled monolayers (SAMs) of polarized and nonpolarized organosilane molecules on gate insulators induced tunable threshold voltage shifting and current modulation in organic field-effect transistors (OFETs) made from solution-deposited 5,5'-bis(4-hexylphenyl)-2,2'-bithiophene (6PTTP6), defining depletion-mode and enhancement-mode operation. p-Channel inverters were made from pairs of OFETs with an enhancement-mode driver and a depletion-mode load to implement full-swing and high-gain organic logic circuits. The experimental results indicate that the shift of the transfer characteristics is governed by the built-in electric field of the SAM. The effect of surface functional groups affixed to the dielectric substrate on the grain appearance and film mobility is also determined.  相似文献   

8.
The quest for high-performance organic thin-film transistor (OTFT) gate dielectrics is of intense current interest. Beyond having excellent insulating properties, such materials must meet other stringent requirements for optimum OTFT function: efficient low-temperature solution fabrication, mechanical flexibility, and compatibility with diverse gate materials and organic semiconductors. The OTFTs should function at low biases to minimize power consumption, hence the dielectric must exhibit large gate capacitance. We report the realization of new spin-coatable, ultrathin (<20 nm) cross-linked polymer blends exhibiting excellent insulating properties (leakage current densities approximately 10(-)(8) Acm(-)(2)), large capacitances (up to approximately 300 nF cm(-)(2)), and enabling low-voltage OTFT functions. These dielectrics exhibit good uniformity over areas approximately 150 cm(2), are insoluble in common solvents, can be patterned using standard microelectronic etching methodologies, and adhere to/are compatible with n(+)-Si, ITO, and Al gates, and with a wide range of p- and n-type semiconductors. Using these dielectrics, complementary invertors have been fabricated which function at 2 V.  相似文献   

9.
This digest aims to provide organic chemists with an overview of recent progress on n-type organic semiconductors for application in organic thin film transistors (OTFTs) with an emphasis on molecular design. Herein, we survey n-type organic semiconductors with field effect mobility of 1 cm2/Vs or higher in OTFTs after a brief introduction to the structure and operation of OTFTs and discussion of two key factors (frontier molecular orbitals and molecular packing) of organic semiconductors. On the basis of this survey, we finally reach conclusions on the current status of n-type organic semiconductors for OTFTs and provide an outlook for molecular design.  相似文献   

10.
A π-conjugated polyazine containing diketopyrrolopyrrole (DPP) moiety, PDBTAZ, is synthesized through a simple condensation polymerization. PDBTAZ is found to be a high-performance ambipolar semiconductor in organic thin film transistors (OTFTs), showing an electron mobility of up to 0.41 cm(2) V(-1) s(-1) and a hole mobility of up to 0.36 cm(2) V(-1) s(-1).  相似文献   

11.
Highly transparent In-Ga-Zn oxide (IGZO) thin films were fabricated by spin coating using acetate- and chlorate-based precursors, and thin film transistors (TFTs) were further fabricated employing these IGZO films as the active channel layer. The impact of the post-annealing temperature on the physical properties of IGZO films and performance of IGZO TFTs were investigated. Compared to the nitrate-based IGZO precursor, the chlorate-based precursor increases the phase change temperature of IGZO thin films. The IGZO films changed from amorphous to nanocrystalline phase in an annealing temperature range of 600–700 °C. The transparency is more than 90% in the visible region for IGZO films annealed with temperatures higher than 600 °C. With the increase of post-annealing temperature, the carrier concentration of IGZO film decreases, while the sheet resistance increases firstly and then saturates. The bottom-gate TFT with IGZO channel annealed at 600 °C in oxygen showed the best performance, which was operated in n-type enhancement mode with a field effect mobility of 1.30 cm2/V s, a threshold voltage of 10 V, and a drain current on/off ratio of 2.5 × 104.  相似文献   

12.
A method for the fabrication of polymeric thin-film transistors (TFTs) by lamination is described. Poly(dimethylsiloxane) stamps were used to delaminate thin films of semiconducting polymers from silicon wafers coated with a self-assembled monolayer (SAM) formed from octyltrichlorosilane. These supported films were laminated onto electrode structures to form coplanar TFTs. The fabrication process was used to make TFTs with poly(3-hexylthiophene), P3HT, and poly[5,5'-bis(3-dodecyl-2-thienyl)-2,2'-bithiophene], PQT-12. TFTs, where these polymers were laminated onto gate dielectrics coated with SAMs from octyltrichlorosilane, had effective field-effect mobilities of 0.03 and 0.005 cm2/(V s), respectively. TFTs where PQT-12 was laminated onto gate dielectrics that were not coated with a SAM also had mobility of 0.03 cm2/(V s). In contrast, TFTs fabricated by spin-coating PQT-12 onto the same structure had mobilities ranging from 10-3 to 10-4 cm2/(V s). These results suggest that the lower mobilities of polymer TFTs made with hydrophilic gate dielectrics are caused by molecular ordering in the semiconducting film rather than electronic effects of dipolar groups at the interface.  相似文献   

13.
Finite regions of high conductivity were observed in both n- and p-channel organic thin film transistors based on polycrystalline organic semiconductor films and a solution-processed, solid polymer electrolyte gate dielectric. The transition from a highly conductive state to a more insulating state with increasing gate bias may be attributed to the realization of carrier densities greater than 1014 charges/cm2 in the semiconductor film.  相似文献   

14.
Furan substituted diketopyrrolopyrrole (DBF) combined with benzothiadiazole based polymer semiconductor PDPP-FBF has been synthesized and evaluated as an ambipolar semiconductor in organic thin-film transistors. Hole and electron mobilities as high as 0.20 cm(2) V(-1) s(-1) and 0.56 cm(2) V(-1) s(-1), respectively, are achieved for PDPP-FBF.  相似文献   

15.
We present a high performance, ambipolar organic field-effect transistor composed of a single material. Ambipolar molecules are rare, and they can enable low-power complementary-like circuits. This low band gap, asymmetric linear acene contains electron-withdrawing fluorine atoms, which lower the molecular orbital energies, allowing the injection of electrons. While hole and electron mobilities of up to 0.071 and 0.37 cm2/V.s, respectively, are reported on devices measured in nitrogen, hole mobilities of up to 0.12 cm2/V.s were found in ambient, with electron transport quenched. These devices were fabricated on octadecyltrimethoxysilane-treated surfaces at a substrate temperature of 60 degrees C.  相似文献   

16.
Soluble precursors of 2,3-naphthalocyanine (Nc) and phthalocyanine (Pc) were prepared and were converted into insoluble semiconducting thin films of Pc and Nc by heating after fabrication via spin-coating.  相似文献   

17.
A comprehensive structural and electrical characterization of solution-processed blend films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) semiconductor and poly(alpha-methylstyrene) (PalphaMS) insulator was performed to understand and optimize the blend semiconductor films, which are very attractive as the active layer in solution-processed organic thin-film transistors (OTFTs). Our study, based on careful measurements of specular neutron reflectivity and grazing-incidence X-ray diffraction, showed that the blends with a low molecular-mass PalphaMS exhibited a strong segregation of TIPS-pentacene only at the air interface, but surprisingly the blends with a high molecular-mass PalphaMS showed a strong segregation of TIPS-pentacene at both air and bottom substrate interfaces with high crystallinity and desired orientation. This finding led to the preparation of a TIPS-pentacene/PalphaMS blend active layer with superior performance characteristics (field-effect mobility, on/off ratio, and threshold voltage) over those of neat TIPS-pentacene, as well as the solution-processability of technologically attractive bottom-gate/bottom-contact OTFT devices.  相似文献   

18.
Poly{2,6‐bis(3‐dodecylthiophen‐2‐yl) benzo[1,2‐b;4,5‐b′]dithiophene} (PTBT) was synthesized, via oxidative polymerization by oxidative agent (FeCl3). The mole ratio of FeCl3 and monomer (3.5:1), and keeping low temperature during the dropping of diluted catalyst were very important for the polymerization without crosslinking. The PTBT was confirmed by 1H NMR, FTIR spectra, and elemental analysis. The PTBT has very good solubility in organic solvents such as chloroform, tetrahydrofuran, etc, and good thermal stability with Tg of 164 °C. The PTBT shows UV‐optical absorption at 406 nm and photoluminescence (PL) spectroscopy at 504 nm in a film. The highest occupied molecular orbital (HOMO) energy of the polymer is ?5.71 eV by measuring cyclic voltammetry (CV). A solution‐processed polymer thin film transistor device shows a mobility of 3 × 10?5 – 8 × 10?5 cm2 V?1 s?1, and an on/off current ratio of 104. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5277–5284, 2007  相似文献   

19.
Incorporation of a block copolymer into a thin polymer film is observed to alter both the rate and mechanism by which the film dewets from an immiscible polymer substrate. Films with little or no copolymer dewet by classical nucleation and growth of circular holes, and the dewetting rate decreases with increasing copolymer concentration. Increasing the copolymer content at constant film thickness generates copolymer micelles that adsorb/aggregate along the polymer/polymer interface and promote nonclassical dewetting fluctuations similar in appearance to spinodal dewetting. At higher copolymer concentrations, dewetting proceeds after a lengthy induction period by the nucleation and growth of flower-shaped holes suggestive of film pinning or viscous fingering. Atomic force microscopy of the polymer/polymer interface after removal of the top film by selective dissolution reveals substantial structural development due to copolymer self-assembly.  相似文献   

20.
Solution and solid-state properties of two new perfluoroalkyl end-substituted analogues of distyryl-bithiophene (CF3-DS2T and diCF3-DS2T) are presented. Vacuum deposited thin films were investigated by atomic force microscopy, X-ray diffraction, and implemented as active layers into organic thin film transistors. While physicochemical measurements in solution suggest a preferential hole injection and transport inside CF3-DS2T and diCF3-DS2T films, electrical measurements performed under high vacuum show that CF3-DS2T behaves as n-type semiconductor while no charge transport was measured in diCF3-DS2T. The results highlighted the importance of substituents on conjugated backbone and on the resulting fine ordering in solid state to control the charge transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号