首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Interaction of carboplatin with cytochrome c (Cyt. c) has been investigated by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS). ESI-MS studies revealed that the ring-opened adducts of carboplatin with Cyt. c were formed in the stoichiometric ratio of 1:1 and 2:1 at pH 5.0 and 37 degrees C and in the stoichiometric ratio of 1:1 only at pH 7.0 and 37 degrees C. It was also found that Cyt. c could be cleaved by carboplatin at pH 2.5 and 50 degrees C. The cleaved fragments of Cyt. c were determined by ESI-MS and MS/MS analysis to be Glu66 approximately Met80, Ac-Gly01 approximately Met65, Glu66 approximately Glu104, Ac-Gly01 approximately Met80 and Ile81 approximately Glu104. The carboplatin prefers to anchor to Met65 first, then to Met80. To further confirm the binding site of Met, AcMet-Gly was used as the model molecule to investigate its interaction with carboplatin and its hydrolysis reaction. On the basis of species detected during the reaction monitored by ESI-MS, a possible pathway of the cleavage reaction was proposed.  相似文献   

2.
Porphyrin derivatives having a galactose or a bis(isopropylidene)galactose structural unit, linked by ester or ether bonds, were characterized by electrospray tandem mass spectrometry (ES-MS/MS). The electrospray mass spectra of these glycoporphyrins show the corresponding [M + H](+) ions. For the glycoporphyrins with pyridyl substituents and those having a tetrafluorophenyl spacer, the doubly charged ions [M + 2H](2+) were also observed in ES-MS with high relative abundance. The fragmentation of both [M + H](+) and [M + 2H](2+) ions exhibited common fragmentation pathways for porphyrins with the same sugar residue, independently of the porphyrin structural unit and type of linkage. ES-MS/MS of the [M + H](+) ions of the galactose-substituted porphyrins gave the fragment ions [M + H - C(2)H(4)O(2)](+), [M + H - C(3)H(6)O(3)](+), [M + H - C(4)H(8)O(4)](+) and [M + H - galactose residue](+). The fragmentation of the [M + 2H](2+) ions of the porphyrins with galactose shows the common doubly charged fragment ions [porphyrin + H](2+), [M + 2H - C(2)H(4)O(2)](2+), [M + 2H - C(4)H(8)O(4)](2+), [M + 2H - galactose residue](2+) and the singly charged fragment ions [M + H - C(3)H(6)O(3)](+) and [M + H - galactose residue](+). The fragmentation of the [M + H](+) ions of glycoporphyrins with a protected galactosyl residue leads mainly to the ions [M + H - CO(CH(3))(2)](+), [M + H - 2CO(CH(3))(2)](+), [M + H - 2CO(CH(3))(2) - CO](+), [M + H - C(10)H(16)O(4)](+) and [M + H - protected galactose](+). The doubly charged ions [M + 2H](2+) fragment to give the doubly charged ions [porphyrin + H](2+) and the singly charged ions [M + H - protected galactose residue](+) and [M + H - CO(CH(3))(2)](+). For the porphyrins where the sugar structural unit is linked by an ester bond, [M + 2H](2+), ES-MS/MS showed a major and typical fragmentation corresponding to combined loss of a sugar structural unit and further loss of water, leading to the ion [M + 2H - sugar residue - H(2)O](2+), independently of the structure of the sugar structural unit. These results show that ES-MS/MS can be a powerful tool for the characterization of the sugar structural unit of glycoporphyrins, without the need for chemical hydrolysis.  相似文献   

3.
The zinc complexes of diaryl bis(p-nitrophenyl)porphyrins and beta-(1,3-dinitroalkyl)tetraphenylporphyrins were studied by electrospray ionization (ESI) tandem mass spectrometry (MS/MS). All porphyrins showed the protonated molecule under ESI conditions. The protonated molecules were induced to fragment and the corresponding ESI tandem mass spectra were analysed. Porphyrins with two p-nitrophenyl groups showed, as expected, characteristic fragmentations including either loss of one nitro group, as the major fragment of the tandem mass spectra, and loss of both nitro groups. In contrast, MS/MS of the beta-(1,3-dinitroalkyl)porphyrins provided interesting and unexpected results such as the absence (or in insignificant abundance) of the ions formed by loss of one nitro group. However, these porphyrins show an abundant fragment due to combined loss of the two nitro groups. Also, the typical beta-cleavage of the alkyl chain is not observed per se, only when combined with loss of HNO2 or *NO2. Instead, alpha-cleavage, with loss of the beta-pyrrolic substituent, is the most favourable process.  相似文献   

4.
The bisphosphonate family with a P-C-P structure is a broad class of drugs, widely investigated as potential inhibitors in bone diseases and calcium metabolic disorders. In this study, the mass spectrometric (MS) behavior and fragmentation of clodronate and related bisphosphonate and phosphonate compounds was studied by using negative ion electrospray ionization (ESI) with triple quadrupole and ion trap instruments. The effect of pH on the degree of deprotonation of the polyprotic bisphosphonic and phosphonic acids in negative ion ESI-MS was investigated, and the degree of deprotonation in the ESI mass spectra and the dissociation in the liquid phase were compared. The results provide evidence that the measured ESI mass spectra do not correlate with the chemistry in the liquid phase owing to the decrease in the pH of the solvent droplets during the ion evaporation process and the charge state neutralization in the gas phase. Ion trap MS(n) provided useful information on the fragmentation study of clodronate and related bisphosphonate and phosphonate compounds, in which interesting fragmentation pathways including the direct elimination of carbon monoxide from deprotonated bisphosphonates and formation of a P-P bond were observed. Reactions between the product ions with a -PO(2) group and residual water in the ion trap or in the high-pressure region of the triple quadrupole instrument formed other unexpected fragmentation paths for all the bisphosphonates studied.  相似文献   

5.
The cytochalasin class of fungal metabolites was analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) with the aim of developing a methodology for their rapid identification in microbial extracts. ESI-MS analyses of reference cytochalasins were performed and several product ions were produced in MS/MS experiments on parent ions that are structurally characteristic. A precursor ion search was performed to detect cytochalasins in an ethyl acetate extract of fungal strain RK97-F21. Three cytochalasins were detected and one of the components was identified as epoxycytochalasin H by comparing the tandem mass spectra of the product ions with those of reference compounds. This finding was further validated by LC/MS and LC/MS/MS experiments.  相似文献   

6.
A mass spectrometric-based procedure for anthocyanin profiling was set up to distinguish authentic Vitis vinifera from hybrid red grapevine cultivars. 3-O-Monoglucoside and the related acetyl-, p-coumaryl- and caffeoyl-monoglucoside anthocyanins occurred only in Vitis vinifera, whereas 3,5-O-diglucoside and the substituted acetyl-, p-coumaryl-, feruloyl- and caffeoyl-diglucoside anthocyanins were the additional pigments in hybrid grapevines. The procedure was applied expressly to identify red grape cultivars based on the anthocyanin chemo-type determination. In particular, a red grape cultivar, having 3,5-O-diglucoside anthocyanins and a novel class of anthocyanin monoglucosides, such as cyanidin-3-O-, cyanidin-3-O-(6-O-acetyl)- and cyanidin-3-O-(6-O-p-coumaryl)pentoside, was classified as hybrid. A second vine cultivar, characterized exclusively by 3-O-monoglucoside anthocyanins, was included among the Vitis vinifera species. Anthocyanin profiling by mass spectrometry could represent the core of a chemotaxonomic procedure for distinguishing American and European grapevines based on the identification of post-synthetic anthocyanidin modification.  相似文献   

7.
Simple, convenient, sensitive and accurate analytical methods are needed for the structural characterization and identification of alkaloid components in Rhizoma Coptidis in traditional Chinese herbal medicine, which has important bioactivity. In this work, the identification of alkaloid compounds in Rhizoma Coptidis was investigated by obtaining molecular mass information using electrospray ionization mass spectrometry (ESI-MS). Multi-stage tandem mass spectrometric (ESI-MS(n)) data for the alkaloid compounds were used for detailed structural characterization, then structure information was obtained by comparison of the fragmentation mechanisms of both alkaloids in Rhizoma Coptidis and standard samples of berberine, palmatine, coptisine and jatrorrhizine by MS. Based on the results obtained, the structure of a novel compound was elucidated. The results of the experiments demonstrate that ESI-MS(n) is a sensitive, selective and effective tool for the rapid determination of alkaloids in Rhizoma Coptidis.  相似文献   

8.
Electrospray ionization tandem mass spectrometry (ESI-MS(n)) and the phase solubility method were used to characterize the gas-phase and solution-phase non-covalent complexes between rutin (R) and alpha-, beta- and gamma-cyclodextrins (CDs). The direct correlation between mass spectrometric results and solution-phase behavior is thus revealed. The order of the 1 : 1 association constants (K(c)) of the complexes between R and the three CDs in solution calculated from solubility diagrams is in good agreement with the order of their relative peak intensities and relative collision-induced dissociation (CID) energies of the complexes under the same ESI-MS(n) condition in both the positive and negative ion modes. Not only the binding stoichiometry but also the relative stabilities and even binding sites of the CD-R complexes can be elucidated by ESI-MS(n). The diagnostic fragmentation of CD-R complexes, with a significant contribution of covalent fragmentation of rutin leaving the quercetin (Q) moiety attached to the CDs, provides convincing evidence for the formation of inclusion complexes between R and CDs. The diagnostic fragment ions can be partly confirmed by the complexes between Q and CDs. The gas-phase stability order of the deprotonated CD-R complexes is beta-CD-R > alpha-CD-R > gamma-CD/R; beta-CD seems to bind R more strongly than the other CDs.  相似文献   

9.
A series of chalcones were characterized by electrospray ionization tandem mass spectrometry (MS(n)). Several ionization modes were evaluated, including protonation, deprotonation and metal complexation, with metal complexation being the most efficient. Collision-activated dissociation (CAD) was used to characterize the structures, and losses commonly observed include H(2), H(2)O, CO and CO(2), in addition to methyl radicals for the methoxy-containing chalcones. CAD of the metal complexes, especially [Co(II) (chalcone-H) 2,2'-bipyridine](+), allowed the most effective differentiation of the isomeric chalcones with several diagnostic fragment ions appearing upon activation of the metal complexes. MS(n) experiments were performed to support identification of some fragment ions and to verify the proposed fragmentation pathways. In several cases, MS(n) indicated that specific neutral losses occurred by stepwise pathways, such as the neutral loss of 44 u as CH3* and HCO*, or CH(4) and CO, in addition to CO(2).  相似文献   

10.
The LC/UV-DAD/ESI-MSn negative fragmentation mode of 23 O-glycosylated flavonoids with two, three, four and five hexoses was studied. The results show that it is possible to differentiate the (1-->2) and (1-->6) interglucosidic linkages and also to discern between the flavonoid isomers with two glucoses (sophorosides, gentiobiosides and X,Y-diglucosides), three glucoses (sophorotriosides and X-sophoroside-Y-glucoside) and four glucoses (X-sophorotriosides-Y-glucoside and X-sophoroside-Y-sophoroside). In the characterization of the (1-->2) and (1-->6) interglycosidic linkages, the Y1- (-162 u) and Z1- (-180 u) ions play a relevant role. In the first case ions with high relative abundance (13-79%) are found, whereas in the other cases they are in very low abundance or absent. X,Y-di-O-glucoside flavonoids can be differentiated from the O-diglucoside flavonoids by the presence of Y1- (base peak) and Y0- (approximately 30%) ions and the absence of Z1- ions. Regarding flavonoids glycosylated with three glucoses, X-sophoroside-Y-glucoside flavonoids show the Y7(0-) (-162 u) ion as the only peak in MS2 events whereas in sophorotrioside flavonoids various ions due to intermediate fragmentations are observed. These ions are characteristic of a (1-->2) interglucosidic linkage. In MS2 experiments on flavonoids with four glucoses (X-sophorotrioside-Y-glucoside and X-sophoroside-Y-sophoroside), the base peak indicated the total loss of the sugar moieties in position 7. In addition, the characterization of the type of interglycosidic linkage in flavonoids glycosylated with five sugars can be achieved. On the other hand, in tetra- and pentaglycosylated flavonoids, the ions that characterize the (1-->2) interglucosidic linkage formed by intermediate fragmentation of the oligosacharide residues (sophorosides and sophorotriosides) are found in much higher relative abundance in MS3 than in MS2 experiments, where they are almost not detected.  相似文献   

11.
Microperoxidases are small heme-peptides obtained by proteolytic digestion of cytochrome c, exhibiting peroxidase activity. They consist of a short- or medium-length polypeptide chain, covalently linked to an iron protoporphyrin IX moiety via two thioether bonds involving Cys residues at the c-porphyrin A and B pyrrole rings. These small molecules are interesting for a wide range of possible applications. We have structurally characterized, by means of electrospray ionization (ESI) mass and tandem mass spectrometric experiments, a novel microperoxidase called MMP-5 (Marinobacter MicroPeroxidase-5), obtained by proteolytic digestion of cytochrome c552, a monoheminic electron-transfer protein isolated from Marinobacter hydrocarbonoclasticus. This microperoxidase, which still maintains the functional peptide moieties for peroxidase activity, is devoid of the two amino acids intercalating the Cys residues linked to the c-porphyrin, thus increasing its water solubility. Once submitted to the ESI source potential, MMP-5 showed an interesting tendency for the reduction of the iron protoporphyrin substructure. This behaviour was clearly evidenced by the mass shift exhibited by the reduced form.  相似文献   

12.
The fragmentation mechanism of aconitine-type alkaloids in the flowers of Aconitum kusnezoffii (FAK) was investigated using electrospray ionization tandem mass spectrometry (ESI-MS(n)) firstly. The analysis of the collision-induced dissociation (CID) spectra of three purified aconitine standards and six previously reported aconitines indicated that the fragmentation of the protonated aconitines at low-energy CID follows a similar pathway. The elimination of a C(8)-substituent such as an acetic acid or a fatty acid is the dominant fragmentation mode in MS2. Successive losses of CH(3)COOH, CH(3)OH, H(2)O, BzOH, and CO are the main fragmentation pathways of aconitine-type alkaloids in MS(3) spectra. Based on these features, a rapid method for the direct detection and characterization of alkaloids from an ethanolic extract of FAK is described. All the known aconitum alkaloids are detected and a series of lipo-aconitines has been found for the first time in this plant.  相似文献   

13.
Comprehensive mass spectral fragmentation patterns have been established for sequencing chromatographically isolated A-type proanthocyanidins (PAs) using electrospray ionization tandem mass spectrometry (ESI-MS(n)) in the positive ion mode similar to those used for sequencing previously reported B-type PAs. Sequence-identifying fragmentations for A-type PAs include heterocyclic ring fission (HRF), retro-Diels-Alder (RDA) fission, benzofuran-forming (BFF) fission, and quinone methide (QM) fission. There is commonality in fragmentation patterns between A-type and B-type PAs, but distinguishing features in the mass spectral patterns between the two classes include 2-Da mass differences in the pseudo molecular ions, the propensity for the A-type PAs to undergo QM fissions and yield bis-quinoid ions as opposed to mono-quinoid ions in the upper unit of the sequence, and the reluctance of A-type linkages to undergo RDA, BFF, and BFF/H(2)O fissions from the upper unit. The positions of one or more A-type (C2-->O-->C7') ether linkages have been located in sequences of PAs ranging in chain lengths of two to five monomer units using ESI-MS(n) data. Using the fragmentation information from ESI-MS(n) experiments, a total of 17 PAs were structurally sequenced by systematic real time ESI-MS(n). Among them ten A-type and six B-type hop PAs are reported here for the first time.  相似文献   

14.
The effect of stereochemistry on the complexation of aldohexoses (glucose, mannose, galactose, allose and talose) and ketohexoses (fructose, tagitose and sorbose) with transition metal chlorides (CoCl(2), NiCl(2), MnCl(2) and ZnCl(2)) has been investigated by electrospray ionization tandem mass spectrometry. Electrospray ionization of methanolic solutions of hexoses containing metal chlorides gave abundant ions corresponding to [M + MetCl](+) and [2M + MetCl](+) which on collision-induced dissociation gave characteristic fragment ions. The fragmentation pathways have been confirmed by examining methyl glucoside and several isotopically labeled glucoses. Eliminations of H(2)O and HCl, C-C cleavages and elimination of metalhydroxychloride are the competing fragmentation pathways observed. All these pathways seem to be influenced by the stereochemistry of the molecule. The fragmentation of the dimeric complexes, [2M + MetCl](+), is also controlled by the stereochemistry of the molecule. The abundance of the product ions corresponding to elimination of HCl is found to increase with increasing number of axial hydroxyl groups in aldohexoses. [2M + MetCl](+) dissociates by elimination of HCl followed by C(2)H(4)O(2) in aldohexose complexes and by elimination of HCl followed by C(3)H(6)O(3) in ketohexose complexes.  相似文献   

15.
Earlier characterization of some hydrolysis products of AlCl3·6H2O was confirmed by electrospray ionization tandem mass spectrometry with increasing collision energy of projectile ions. At lower collision energies, the aqua ligands were stripped off. At higher energies, two hydroxo groups formed a bridging oxo group with loss of one water molecule. Aluminum complexes could also capture aqua ligands in the collision chamber so long as the parent ion did not fragment, and the fragment ion spectra broadened toward higher m/z values. The chloro ligands were eliminated as hydrochloric acid. The aluminum cores remained highly intact. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Betaines belong to the naturally occurring osmoprotectants or compatible solutes present in a variety of plants, animals and microorganisms. In recent years, metabolomic techniques have been emerging as a fundamental tool for biologists because the constellation of these molecules and their relative proportions provide with information about the actual biochemical condition of a biological system. Therefore, identification and characterization of biologically important betaines are crucial, especially for metabolomic studies. Most of the natural betaines are derived from amino acids and related homologues. Although, theoretically, all the amino acids can be converted to corresponding betaines by simple methylation of the amine group, only a few of the amino acid‐derived betaines were fully characterized in the literature. Here, we report a combined electrospray ionization tandem and high‐resolution mass spectrometry study of all the betaines derived from amino acids, including the isomeric betaines. The decomposition pathway of protonated, sodiated and potassiated molecule ions that enable unambiguous characterization of the betaines including the isomeric betaines and overlapping ionic species of different betaines is distinctive. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Within a mixture of proteins, minor polymorphic components are difficult to identify using a conventional proteomic approach. Their identification generally requires multi-dimensional separation steps, before or after proteolytic cleavage, followed by sequence analysis of the proteolytic products. In this study, we investigated the potential of tandem mass spectrometry for protein characterization by identifying the delta-beta hybrid human hemoglobin variant Lepore-Boston-Washington using electrospray ionization tandem mass spectrometry. Hemoglobin Lepore-Boston-Washington occurs mainly in heterozygotes, where it comprises approximately 10% of the total non-alpha-chains, the dominant non-alpha-chain being the normal beta (approximately 90%). Furthermore, Hemoglobin Lepore-Boston-Washington has an average molecular mass (15,865.23 Da) that is only 2 Da lower than that of the normal beta-chain (15,867.24 Da). Consequently, it cannot be resolved from the normal beta-chain by mass spectrometry. Here we show how Hemoglobin Lepore-Boston-Washington was identified directly from the diluted blood of a heterozygote by analyzing the product ions from the Lepore-Boston-Washington and normal beta-chain ions without prior separation of the individual chains. This study shows the potential of the tandem mass spectrometry for identifying a minor component in an unseparated mixture of proteins.  相似文献   

18.
A simple, sensitive and rapid high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the assay of granisetron in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase C18 column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 313/138 for granisetron and m/z 409/228 for the IS. The assay exhibited a linear dynamic range of 0.1-20 ng/mL for granisetron in human plasma. The lower limit of quantification was 100 pg/mL with a relative standard deviation of less than 5%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

19.
A simple and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for determining domperidone in human plasma. The analyte and internal standard (IS; mosapride) were isolated from plasma samples by protein precipitation with methanol (containing 0.1% formic acid). The chromatographic separation was performed on an Xterra MS C(18) Column (2.1 x 150 mm, 5.0 microm) with a gradient programme mobile phase consisting of 0.1% formic acid and acetonitrile at a flow rate of 0.30 mL/min. The total run time was 4.0 min. The analyses were carried out by multiple reaction monitoring using the parent-to-daughter combinations m/z 426 --> 175 and m/z 422 --> 198 (IS). The areas of peaks from the analyte and IS were used for quantification of domperidone. The method was validated according to the FDA guidelines on bioanalytical method validation. Validation results indicated that the lower limit of quantification was 0.2 ng/mL, and the assay exhibited a linear range of 0.2-60.0 ng/mL and gave a correlation coefficient (r(2)) of 0.999 or better. Quality control samples (0.4, 0.8, 15 and 50 ng/mL) in six replicates from three different analytical runs demonstrated an intra-assay precision (RSD) 4.43-6.26%, an inter-assay precision 5.25-7.45% and an overall accuracy (relative error) of <6.92%. The method can be applied to pharmacokinetic and bioequivalence studies of domperidone.  相似文献   

20.
A rapid high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of fexofenadine in human plasma using mosapride as internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 502/466 for fexofenadine and m/z 422/198 for the IS. The method exhibited a linear dynamic range of 1-500 ng/mL for fexofenadine in human plasma. The lower limit of quantification was 1 ng/mL with a relative standard deviation of less than 5% for fexofenadine. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 2 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号