首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper describes an approach based on Monte Carlo simulation for the evaluation of uncertainty of nuclear spent fuel analysis. The mathematical model of measurement was established by examining the dissolution process step by step. The results are consistent with those obtained by the classical propagation of variance approach. This paper shows the importance of taking the process into account in order to give a more reliable uncertainty assessment to the result of a concentration ratio of two isotopes in spent fuel. Indeed, for some radionuclides, the uncertainty associated with the upstream steps of the analysis (“process” uncertainty) can represent up to 95 % of the overall uncertainty.  相似文献   

2.
3.
The determination of 93Zr concentration, a long-lived radionuclide present in spent nuclear fuel and in the structural components of nuclear reactors, is a major issue for nuclear waste disposal purpose and to validate neutronic calculation codes. To measure 93Zr concentration in irradiated cladding material with a high precision, an analytical method based on the use of multiple collector-inductively coupled plasma mass spectrometer (MC-ICPMS) combined to isotope dilution technique was developed. First a radiochemical separation of zirconium from a zircaloy sample (a zirconium alloy used as a cladding material for nuclear fuel elements), has allowed to obtain a very pure zirconium fraction with no potential isobaric interferences for mass spectrometric measurements. Then as the determination of all zirconium isotope ratios in the sample is necessary for the isotope dilution method, a MC-ICPMS procedure was developed to perform these precise measurements. Finally, the determination of 93Zr concentration in the same sample was performed, after preparation and calibration of a 96Zr spike solution. The uncertainties obtained on isotope ratios of zirconium by MC-ICPMS were in the order of 0.1%. The final uncertainty obtained on the 93Zr concentration in the nuclear material used and after chemical purification was lower than 0.6%.  相似文献   

4.
Thermal expansions of simulated fuel (SS1) are measured by using a dilatometer (DIL402C) from room temperature to 1900 K. The main procedure of an uncertainty evaluation was followed by the strategy of the UO2 fuel. There exist uncertainties in the measurement, which should be quantified based on statistics. Referring to the ISO (International Organization for Standardization) guide, the uncertainties of the thermal expansion are quantified in three parts—the initial length, the length variation, and the system calibration factor. Each part is divided into two types. The A type uncertainty is derived from the statistical iterative measurement of an uncertainty and the B type uncertainty comes from a non-statistical uncertainty including a calibration and test reports. For the uncertainty evaluation, the digital calipers had been calibrated by the KOLAS (Korea Laboratory Accreditation Scheme) to obtain not only the calibration values but also the type B uncertainty. The whole system, the dilatometer (DIL402C), is composed of many complex sub-systems and in fact it is difficult to consider all the uncertainties of sub-systems. Thus, a calibration of the system was performed with a standard material (Al2O3), which is provided by NETZSCH. From the above standard uncertainties, the combined standard uncertainties were calculated by using the law of a propagation of an uncertainty. Finally, the expanded uncertainty was calculated by using the effective degree of freedom and the t-distribution for a given confidence level. The uncertainty of the thermal expansion for a simulated fuel was also compared with those of UO2 fuel.  相似文献   

5.
A robotized sample-preparation method for the determination of Pu, which is recovered by extraction reprocessing of spent nuclear fuel, by isotope dilution mass spectrometry (IDMS) is described. The automated system uses a six-axis industrial robot, whose motility is very fast, accurate, and flexible, installed in a glove box. The automation of the weighing and dilution steps enables operator-unattended sample pretreatment for the high-precision analysis of Pu in aqueous solutions. Using the developed system, the Pu concentration in a HNO(3) medium was successfully determined using a set of subsequent mass spectrometric measurements. The relative uncertainty in determining the Pu concentration by IDMS using this system was estimated to be less than 0.1% (k = 2), which is equal to that expected of a talented analyst. The operation time required was the same as that for a skilled operator.  相似文献   

6.
Advances in the CARBEX process, a new aqueous chemical method for reprocessing of spent nuclear fuel (SNF) in carbonate media, are considered. A review of carbonate methods for SNF reprocessing is given. The CARBEX process concept is presented and experimental data for every stage of the CARBEX process: high-temperature oxidation of spent fuel composition, its oxidative dissolution in carbonate aqueous solutions, extraction refining of U(VI) and Pu(VI), solid-phase re-extraction of carbonate complexes of U(VI) and Pu(VI), and obtaining of uranium and plutonium dioxide powders for fabrication of ceramic nuclear fuel, are discussed. It was shown that the CARBEX process can be more effective and safe than the well-known industrial PUREX process.  相似文献   

7.
The increase of activities of fission products and transmutation products in the primary coolant of a nuclear power plant indicates the presence of fuel rod failures. The measurement of the activity concentration of the primary coolant was able to detect fuel failures in the reactor core. Microanalytical methods for examining individual hot particles have been developed and applied to fuel failure detection under normal operation conditions as well as during the severe fuel damage that occurred in the cleaning tank incident at Unit 2 of NPP Paks in April 2003. Several faulty fuel rods can be detected simultaneously by the characterization of individual hot particles originating from the primary water. The analysis of particles originating from the damaged fuels provides information relating to the dissolution process of the fuel debris.  相似文献   

8.
In the nuclear domain, precise and accurate isotopic composition determination of elements in spent nuclear fuels is mandatory to validate neutron calculation codes and for nuclear waste disposal. The present study presents the results obtained on Cs isotope ratio by mass spectrometric measurements. Natural cesium is monoisotopic (133Cs) whereas cesium in spent fuels has 4 isotopes (133Cs, 134Cs, 135Cs, and 137Cs). As no standard reference material is available to evaluate the accuracy of Cs isotopic measurements, a comparison of cesium isotopic composition in spent nuclear fuels has been performed between Thermal Ionization Mass Spectrometry (TIMS) and a new method involving Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) measurements. For TIMS measurements, isotopic fractionation has been evaluated by studying the behavior of cesium isotope ratios (133Cs/137Cs and 135Cs/137Cs) during the analyses. For MC-ICPMS measurements, the mass bias effects have been corrected with an external mass bias correction using elements (Eu and Sb) close to cesium masses. The results obtained by the two techniques show good agreement: relative difference on 133Cs/137Cs and 135Cs/137Cs ratios for two nuclear samples, analyzed after chemical separation, ranges from 0.2% to 0.5% depending on the choice of reference value for mass bias correction by MC-ICPMS. Finally the quantification of the 135Cs/238U ratio by the isotope dilution technique is presented in the case of a MOx (mixed oxide) spent fuel sample. Evaluation of the global uncertainties shows that this ratio could be defined at an uncertainty of 0.5% (k = 2). The intercomparison between two independent mass spectrometric techniques is fundamental for the evaluation of uncertainty when no isotopic standard is available.  相似文献   

9.
 The present paper describes the certification of the amount content of Cd, Cr and Pb in two different polyethylene materials within the third phase of the Polyethylene Elemental Reference Material (PERM) project. The analytical procedure to establish the reference values for Cd, Cr and Pb amount contents in these materials is based on isotope dilution mass spectrometry used as a primary method of measurement. Cd and Pb were measured with inductively coupled plasma-mass spectrometry and Cr with positive thermal ionization-mass spectrometry. The decomposition of the polymer matrix was carried out using a high pressure asher. Reference values for amount content, traceable to the SI-system, have been obtained for these three elements in both of the polyethylene samples of PERM. For each of the certified amount content values an uncertainty budget was calculated using the method of propagation of uncertainties according to ISO and EURACHEM guidelines. The measurement procedures, as well as the uncertainty calculations, are described for all three elements. In order to keep the whole certification process as transparent as possible, the preparations of various reagents and materials as well as the sample treatment and blending are described in detail. The mass spectrometry measurements and the data treatment are also explained carefully. The various sources of uncertainty present in the procedure are displayed in the uncertainty budgets. The obtained combined uncertainties for the amount content values were less than 2% relative (k=1) for all investigated elements. The amount contents were in the μmol/kg range, corresponding to mg/kg levels. Received: 21 October 1999 / Accepted: 29 January 2000  相似文献   

10.
In the nuclear field, the accuracy and comparability of analytical results are crucial to insure correct accountancy, good process control and safe operational conditions. All of these require reliable measurements based on reference materials whose certified values must be obtained by robust metrological approaches according to the requirements of ISO guides 34 and 35. The data processing of the characterization step is one of the key steps of a reference material production process. Among several methods, the use of interlaboratory comparison results for reference material certification is very common. The DerSimonian and Laird excess variance approach, described and implemented in this paper, is a simple and efficient method for the data processing of interlaboratory comparison results for reference material certification. By taking into account not only the laboratory uncertainties but also the spread of the individual results into the calculation of the weighted mean, this approach minimizes the risk to get biased certified values in the case where one or several laboratories either underestimate their measurement uncertainties or do not identify all measurement biases. This statistical method has been applied to a new CETAMA plutonium reference material certified by interlaboratory comparison and has been compared to the classical weighted mean approach described in ISO Guide 35. This paper shows the benefits of using an “excess variance” approach for the certification of reference material by interlaboratory comparison.  相似文献   

11.
 The present paper describes the contribution of the Institute for Reference Materials and Measurements to the certification of B, Cd, Mg, Pb, Rb, Sr, and U amount contents in a natural water sample, in round 9 of the International Measurement Evaluation Programme (IMEP-9). The analytical procedure to establish the reference values for B, Cd, Mg, Pb, Rb, Sr, and U amount contents was based on isotope dilution inductively coupled plasma-mass spectrometry used as a primary method of measurement. Applying this procedure reference values, traceable to the SI, were obtained for the natural water sample of IMEP-9. For each of the certified amount contents presented here a total uncertainty budget was calculated using the method of propagation of uncertainties according to ISO and EURACHEM guidelines. The measurement procedures, as well as the uncertainty calculations are described for all seven elements mentioned above. In order to keep the whole certification process transparent and so traceable, the preparations of various reagents and materials as well as the sample treatment and blending, the measurements themselves, and finally the data treatment are described in detail. Explanations focus on Pb as a representative example. The total uncertainties (relative) obtained were less than 2% for all investigated elements at amount contents in the pmol/kg up to the high μmol/kg range, corresponding to low μg/kg and mg/kg levels. Received: 21 October 1999 / Accepted: 29 January 2000  相似文献   

12.
Dissolution of UO2, U3O8, and solid solutions of actinides in UO2 in subacid aqueous solutions (pH 0.9–1.4) of Fe(III) nitrate was studied. Complete dissolution of the oxides is attained at a molar ratio of ferric nitrate to uranium of 1.6. During this process actinides pass into the solution in the form of U(VI), Np(V), Pu(III), and Am(III). In the solutions obtained U(VI) is stable both at room temperature and at elevated temperatures (60 °C), and at high U concentrations (up to 300 mg mL?1). Behavior of fission products corresponding to spent nuclear fuel of a WWER-1000 reactor in the process of dissolution the simulated spent nuclear fuel in ferric nitrate solutions was studied. Cs, Sr, Ba, Y, La, and Ce together with U pass quantitatively from the fuel into the solution, whereas Mo, Tc, and Ru remain in the resulting insoluble precipitate of basic Fe salt and do not pass into the solution. Nd, Zr, and Pd pass into the solution by approximately 50 %. The recovery of U or jointly U + Pu from the dissolution solution of the oxide nuclear fuel is performed by precipitation of their peroxides, which allows efficient separation of actinides from residues of fission products and iron.  相似文献   

13.
A simple and rapid spectrophotometric method has been developed for the determination of Pu in highly radioactive liquid waste. This method uses Nd(III) as an internal standard, which enables us to determine the concentration of Pu and to authenticate the whole analytical scheme as well. A Nd(III) standard mixed with a sample solution and Pu was quantitatively oxidized to Pu(VI) with Ce(IV) in a nitric acid medium, having the maximum absorbance at 830 nm. A spectrophotometric measurement of Pu(VI) was subsequently performed to determine the concentration compared with the maximum absorbance of Nd(III) at 795 nm. It was estimated that the relative expanded uncertainty for a real sample is less than 10%. The limit of detection was calculated to be 1.8 mg/L (3 sigma). The proposed method was also validated through comparison experiments with isotope dilution mass spectrometry, and was successfully applied to analysis for nuclear waste management at spent nuclear fuel reprocessing plants.  相似文献   

14.
A procedure for the determination of the uncertainties in the theoretical mass isotopomer distribution of molecules due to natural variations in the isotope composition of their constituting elements is described here for the first time. For this purpose, a Visual Basic macro for Microsoft Excel was written by adapting the direct stepwise calculation algorithm published by Kubinyi (Anal. Chim. Acta 1991, 247, 107-119, [11] Fig. 1). In our procedure no pruning threshold factors were used to eliminate round up errors for large molecules. Then, the Kragten [13] procedure of uncertainty propagation (Analyst 1994, 119, 2161-2165) was applied taking into account the correlation coefficients between the isotope abundances of the corresponding atoms. For bi-isotopic elements (C, H, N, Cl, Br) the correlation coefficients were given the value of −1. For tri- and tetra-isotopic elements the correlation coefficients were calculated using the mass dependent fractionation law used in stable isotope geochemistry and values of +1 or −1 were obtained depending on the isotope system considered. It was observed that for small organic molecules of natural isotope abundances, such as phenol or polybrominated diphenylethers, the method provided relatively small propagated uncertainties similar in magnitude to those measured experimentally. For 13C-labelled molecules the calculated uncertainties were mainly due to the uncertainties in the isotope enrichment of 13C and were much larger than the experimental uncertainties. For large molecules of natural isotope abundances, such as peptide C68H107N17O25 (NIST 8327 RM), the uncertainties in their mass isotopomer distributions were much larger and their source could be assigned mainly to the uncertainty of the natural isotope composition of carbon. When the size of the molecule was even larger, such as bovine insulin (C254H377N65O75S6), Kragten procedure provided a good estimate for the uncertainty when the most probable isotope composition of carbon in mammals was used in the calculations.  相似文献   

15.
16.
A stable solid spike for the measurement of uranium and plutonium content in nitric acid solutions of spent nuclear fuel by isotope dilution mass spectrometry has been prepared at the European Commission Institute for Reference Materials and Measurements in Belgium. The spike contains about 50 mg of uranium with a 19.838% (235)U enrichment and 2 mg of plutonium with a 97.766% (239)Pu abundance in each individual ampoule. The dried materials were covered with a thin film of cellulose acetate butyrate as a protective organic stabilizer to resist shocks encountered during transportation and to eliminate flaking-off during long-term storage. It was found that the cellulose acetate butyrate has good characteristics, maintaining a thin film for a long time, but readily dissolving on heating with nitric acid solution. The solid spike containing cellulose acetate butyrate was certified as a reference material with certified quantities: (235)U and (239)Pu amounts and uranium and plutonium amount ratios, and was validated by analyzing spent fuel dissolver solutions of the Tokai reprocessing plant in Japan. This paper describes the preparation, certification and validation of the solid spike coated with a cellulose derivative.  相似文献   

17.
In nuclear safeguards, precise and accurate isotopic analyses are needed for two major elements from the nuclear fuel cycle: uranium and plutonium. This can be achieved by Isotope Dilution Mass Spectrometry (IDMS), which is one of the most reliable analytical techniques for the determination of plutonium amount content to a high level of accuracy. In order to achieve reliable isotope measurements isotopic reference materials with certified amount of plutonium and isotopic composition are required. At the Institute for Reference Materials and Measurements (IRMM) various plutonium spike reference materials for isotopes 239Pu, 240Pu, 242Pu and 244Pu are available. This enabled the setup of an inter-calibration campaign inter-linking selected plutonium spikes on a metrological basis applying state-of-the-art measurement procedures. The aim of this campaign is threefold: firstly to perform measurements on selected plutonium spike isotopic reference materials for quality control purposes, secondly to verify the amount content and the isotopic composition of the recently produced IRMM-1027m large sized dried (LSD) spikes and thirdly to demonstrate IRMM’s measurement capabilities for plutonium analysis via external quality tools. The obtained results using various spike isotopic reference materials will be presented and discussed in this paper. The measurement uncertainties of the IDMS results were calculated according to the guide to the expression of uncertainty in measurement (GUM).  相似文献   

18.
The calorimetry exchange (CALEX) program is administered by New Brunswick Laboratory (NBL). The main objective of the program is to provide an independent verification of the internal quality control practices in nuclear material safeguards facilities making plutonium accountability measurements by non-destructive calorimetry/gamma spectrometry techniques. Facilities measure the calorimetric power, and plutonium and 241Am isotope abundances of CALEX program standards using routine accountability procedures. The measurement results as well as two other quantities (effective specific power and plutonium mass) calculated from these results are evaluated for accuracy (or bias) and precision. In this paper, a limited number of measurement results of a CALEX program standard (identified as Calex I) are evaluated with specific goals to identify a suitable method for uncertainty estimation and to identify the major contributors to the uncertainties. In order to achieve the goals, the Calex I measurement results were evaluated using two different methods: the first method confined to uncertainty estimation from random variations of the measurement results alone, and the second method providing a more comprehensive evaluation of uncertainties from both the measurements and the characterized values of the measured standard according to the Guide to the Expression of Uncertainty in Measurement (GUM). The results of this study, and a subsequent study extended to a larger number of results in the CALEX program database, are expected to provide relevant input for developing the International Target Values for plutonium measurements by the calorimetry/gamma spectrometry method.  相似文献   

19.
In the present article, electron probe microanalysis data for Pu and Nd is being used for validating the predictions of the radial power profile in a nuclear fuel rod at an ultrahigh burn-up of 95 and 102 MWd/kgHM. As such the validation of both the new Monte Carlo burn-up code ALEPH and the simpler TUBRNP model of the fuel rod performance code TRANSURANUS has been extended. The analysis of the absolute concentrations and individual isotopes also indicates potential improvements in the predictive capabilities of the simple TUBRNP model, based on the one-group cross sections inferred from the neutron transport calculations in the ALEPH code. This is a first important step toward extending the application range of the fuel rod performance code to burn-up values projected in nuclear power rods based on current trends.  相似文献   

20.
对测量血清中Na+含量的不确定度进行评定。不确定度的来源主要包括血清样品的消化、制备、定容,Na+标准工作液的配制过程、标准曲线拟合等引入的不确定度,计算出各分量的不确定度,通过合成得到测量结果的合成不确定度、扩展不确定度及测试结果的报告形式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号