首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01–0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.  相似文献   

2.
Seeds from six accessions of three species of Roegneria were radiated with 60Co γ-ray at different doses (50, 100, 150, 200, 250, 300 and 400 Gy). Following these treatments, germination energy, germination rate, seedling height, plant height, plant survival, and seed set were observed. Plant survival was highly correlated with seedling height (R 2 > 0.91, P < 0.01) and seed set (R 2 > 0.82, P < 0.01). The semi-lethal dose of each accession, calculated using a ‘Multi-target single-hit’ model, ranged from 60 to 173 Gy. The most suitable absorbed doses for each accession were deduced from these data. The suitable doses for Roegneria kamoji, Roegneria ciliaris and Roegneria japonensis were 65–100 Gy, 63–150 Gy and 80–170 Gy, respectively. According to the range of suitable doses, R. kamoji (Pr87-88-353) was the most sensitive to radiation, and R. japonensis (88-89-267) was the most resistant to radiation. Suitable doses of R. ciliaris were close to that of R. kamoji (ZY1007). This research provides preliminary guidelines for radiation induced mutagenesis in Roegneria.  相似文献   

3.
The electrical conduction in polyethylene terephthalate (PET) exposed to a gamma radiation dose of 150 kGy was investigated in the applied field range from 4 to 36 kV/mm. Samples were irradiated in air at room temperature by means of a 60Co gamma source at a dose rate of approximately 42 Gy/min. The electrical properties of virgin and irradiated materials were examined by charging and discharging current measurements. The current decays with time can be represented according to an inverse power law. The changes of dielectric behavior after irradiation were attributed to scission effects.  相似文献   

4.
The paper presents an innovative approach towards development of real time dosimetry using a chemical dosimeter for measurement of absorbed radiation dose in the range between 1 and 400 Gy. Saturated chloroform solution in water, a well known chemical dosimeter, is used to demonstrate the concept of online measurement of radiation dose. The measurement approach involves online monitoring of increase in conductivity of saturated chloroform solution due to progressive build up of traces of highly conducting HCl during exposure to gamma irradiation. A high performance pulsating sensor-based conductivity monitoring instrument has been used to monitor such real time change in conductivity of solution. A relation between conductivity shift and radiation dose has been established using radiochemical yield value (G value) of HCl. The G value of HCl in saturated chloroform dosimeter has been determined using laboratory developed pulsating sensor-based devices. In this connection dose rate of Co-60 gamma chamber was determined using Fricke dosimeter following a simple potentiometric measurement approach developed in-house besides conventional spectrophotometry. Results obtained from both measurement approaches agreed well. Complete instrumentation package has also been developed to measure real time radiation dose. The proposed real time radiation dosimeter is successfully tested in several measurement campaigns in order to assure its performance prior to its deployment in field.  相似文献   

5.
The yield increase of secondary metabolite production was examined in plant cell cultures with the use of relatively low to high doses gamma irradiation. Suspension culture of Lithospermum erythrorhizon cells was irradiated to 2, 16, and 32 Gy. The gamma irradiation significantly stimulated the shikonin biosynthesis of the cells and increased the total shikonin yields (intracellular+extracellular shikonin yields) by 400% at 16 Gy and by only 240% and 180% at 2 and 32 Gy, respectively. One of the key enzymes for the shikonin biosynthesis of cells, p-hydroxylbenzoic acid (PHB) geranyltransferase, was found to be stimulated by the gamma-radiation treatments. The activity of PHB geranyltransferase was increased at 2 and 16 Gy with a negligible change at 32 Gy. In contrast, the activity of PHB glucosyltransferase was slightly changed at all doses of gamma radiation compared with the control cells. Therefore, the increase in PHB geranyltransferase activity leads to the accumulation of secondary metabolites such as a shikonin, which may contribute to plant defense against the stresses induced by gamma irradiation.  相似文献   

6.
We recently reported the use of low dose gamma irradiation to improve plant vigor, grain development and yield attributes of wheat (Singh and Datta, 2010). Further, we report here the results of a field experiment conducted to assess the effect of gamma irradiation at 0, 0.01, 0.03, 0.05, 0.07 and 0.1 kGy on flag leaf area, stomatal conductance, transpiration and photosynthetic rate and plant and grain nutritional quality. Gamma irradiation improved plant nutrition but did not improve the nutritional quality of grains particularly relating to micronutrients. Grain carotene, a precursor for vitamin A, was higher in irradiated grains. Low grain micronutrients seem to be caused by a limitation in the source to sink nutrient translocation rather than in the nutrient uptake capacity of the plant root.  相似文献   

7.
This work includes the applications of radiation processing to decompose dimethyl phthalate (DMP) with gamma and gamma/H2O2 processes. Changes in amounts of DMP, dissolved oxygen, total acidity and formaldehyde with irradiation dose were followed. The qualitative analysis of the DMP and the intermediates were determined by using a gas chromatography combined to mass spectrometry and ion chromatography. The results indicated that degradation rate of DMP was affected by H2O2 concentration, irradiation dose and removal efficiency of 25 mg L?1 DMP can reach 100% for 1.42 kGy irradiation dose in the concentration of 4.8 mM H2O2, respectively.  相似文献   

8.
In this study, radiation stability of poly(bisphenol-a-epichlorohydrin) (PBEH) was studied via gamma irradiations at two different dose rates of 1540 and 82.8 Gy/h, in order to understand the possible use of PBEH in radioactive waste management as a solidifying agent. The total dose of irradiation was up to 2150 kGy. Degradation nature was tested by studying the changes in mechanical and thermal properties with the change of dose rate and total dose of irradiation. Tensile strength at yield was increased first then decreased when irradiated, while toughness decreased. The half value dose (HVD) of elongation was found as 29 kGy at dose rate of 1540 Gy/h. The non-irradiated PBEH was transparent, and the color changed to yellow with irradiation. Mechanical tests showed that PBEH has high radiation stability although there were some structural changes. It was seen that PBEH is a candidate polymer to be used in the immobilization of radioactive waste regarding radiation stability.  相似文献   

9.
In this work we have successfully implemented thermoluninescence TL method for irradiated food identification. First tests are performed on Indian black pepper and show promising results to extend the proposed method to many other foods. The X-ray diffraction (XRD) shows that SiO2 (p3221) is the main component of the separated mineral phase. A saturation dose of ~ 100 Gy is determined for this pepper above which all thermoluminescent centers of the quartz are activated. Thus, above this threshold dose, only the pepper irradiation will be confirmed but no accuracy on the exact dose received.  相似文献   

10.
A study has been made on the compatibility of recycled polyethylene terephthalate (R-PET) and low density polyethylene (LDPE) blend in the presence of ethylene vinyl acetate (EVA) as a compatibilizing agent prepared by extrusion hot stretching process. EVA content in the blend as a compatibilizing agent was an enhancement effect on radiation crosslinking of R-PET/EVA/LDPE blends and the highest radiation crosslinking was obtained when the EVA content was reached at 10 % EVA when irradiated by gamma irradiation. Blends containing different (EVA) ratios were irradiated to different doses of gamma irradiation 25, 50 and 100 kGy. The effect of the compatibilizer and radiation on mechanical, thermal properties of R-PET together with LDPE and morphology has been investigated. It was found that gamma irradiation together with the presence of compatibilizing agent (EVA) has positive effect on the mechanical and thermal properties of R-PET/LDPE blend. The structural properties of R-PET/LDPE modified by gamma irradiation and EVA as compatibilizing agent was examined by SEM. Also, it was found that the optimum concentration of EVA and gamma irradiation dose was found to be 10 % EVA and 100 kGy, respectively.  相似文献   

11.
The variable energy microtron at Mangalore University has been used to study the effect of radiation on different materials and biological systems. While studying the effects of radiation, it is essential to have complete knowledge of absorbed dose. In the present study the dose due to 8 MeV electron beam from microtron accelerator has been calculated using chemical dosimeters. The uniformity of dose distribution at various points of the irradiation area also has been calibrated. From the dosimetry studies it is observed that there is a linear relation between dose and electron numbers over a wide range of absorbed doses. It is evaluated that the electron counts of about 1.15 × 1014 corresponds to an absorbed dose of 100 Gy and a field size of about 4 × 4 cm is available at 30 cm distance from the beam exit window over which the dose distribution is uniform.  相似文献   

12.
The objective of the study is to investigate the biological effects of N+ beam implantation in different ploidy rice. N+ beam implantation had increase effect in tillers number, spikelet fertility, grain yield per plant, si-phellem cell size, photosynthetic rate, transpiration rate, flag leaf dry weight, flag leaf culm dry weight, stomatal length, vascular bundle area, and protein and starch content and decrease effect in 1,000-grain weight, stomatal width and chlorophyll, calcium, sodium, and zinc content for all rice lines. N+ beam implantation had opposite effect on diploid and autotetraploid rice lines in vascular bundle area, stomatal complexes areas, epidermal cell size, era length, area of air spaces, midrib length, papilla number, flag leaf length, flag leaf width, flag leaf area, and cadmium, copper, ferrum, magnesium and phosphorus content. Twenty traits of diploid line and ten traits of autotetraploid line are significantly increased by N+ beam in this experiment, ranging from 6.8 to 362.7 % in diploid line and 7.9 to 131.7 % in autotetraploid line. Six traits of diploid lines and 15 traits of autotetraploid line are significantly decreased by N+ beam implantation in this experiment, ranging from 8.9 to 87.4 % in diploid line and 5.6 to 88.5 % in autotetraploid line.  相似文献   

13.
Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering the total absorbed dose received by a container in tandem with the physical characteristics of the radioactive material housed within that container, this method has the potential to provide enhanced pathway information regarding the history of the container and its radioactive contents. We report the latest in a series of experiments designed to validate and demonstrate this newly developed tool. Thermoluminescence (TL) dosimetry was used to measure dose effects on raw stock borosilicate container glass up to 70 days after gamma ray, X-ray, beta particle or ultraviolet irradiations at doses from 0.15 to 20 Gy. Two main peaks were identified in the TL glow curve when irradiated with 60Co, a relatively unstable peak around 120 °C and a more stable peak around 225 °C. Signal strength of both peaks decayed with time. The minimum measurable dose using this technique is 0.15 Gy, which is roughly equivalent to a 24 h irradiation at 1 cm from a 50 ng 60Co source. As a result of fading, this dose would be detectable for approximately 1 year post-irradiation. In a more detailed analysis, the TL glow curves were separated into five peaks centered near 120, 160, 225, 300, and 340 °C. Differences in TL glow curve shape and intensity were observed for the glasses from different geographical origins. These differences can be explained by changes in the intensities of the five peaks. This suggests that mechanisms controlling radiation induced defect formation from gamma, beta, X-ray, and UV sources may be similar.  相似文献   

14.
An efficient plant regeneration protocol was established for an endangered ethnomedicinal plant Desmodium gangeticum (Linn.) DC. Morphogenic calli were produced from 96 % of the cultures comprising the immature leaf explants on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (4.0 mg?l?1) in combination with 6-benzylaminopurine (BA; 0.8 mg?l?1). For callus regeneration, various concentrations of BA (1.0–5.0 mg?l?1) or thidiazuron (TDZ; 1.0–5.0 mg?l?1) alone or in combination with indole-3-acetic acid (IAA; 0.2–1.0 mg?l?1) were used. Highest response of shoot regeneration was observed on MS medium fortified with TDZ (4.0 mg?l?1) and IAA (0.5 mg?l?1) combination. Here, 100 % cultures responded with an average number of 22.3 shoots per gram calli. Inclusion of indole-3-butyric acid in half MS medium favored rooting of recovered shoots. Out of 45 rooted plants transferred to soil, 40 survived. Total DNA was extracted from the leaves of the acclimatized plants of D. gangeticum. Analysis of random amplified polymorphic DNA using 13 arbitrary decanucleotide primers showed the genetic homogeneity in all the ten plants regenerated from callus with parental plant, suggesting that shoot regeneration from callus could be used for the true-to-type multiplication of this plant.  相似文献   

15.
An attempt has been made to detect the effect of a small dose of ionizing radiation on the course of α,β-globulin thermal denaturation in aqueous solutions. Doses of 0.1 and 1.8 Gy have been delivered using γ-rays emitted by 60Co isotope while doses of 10 and 100 Gy have been supplied by X-rays produced by linear accelerator. The highest dose has visibly changed DSC curve of protein solution while the changes due to lower doses are hardly detectable. Although very weak, the irradiation effect found has been dose dependent. The results suggest that the influence of ionizing radiation on globulins solution is bigger when the dose rate is lower at given dose. The opposite direction of differences between irradiated and control samples for fresh and stored protein solutions suggests various characters of changes in initial and later period of sample aging. This may be an important reason for difficulties in an investigation of the effect of ionizing radiation on protein solution, especially for low doses delivered very slowly.  相似文献   

16.
A variety of processes, from material sterilization and cancer treatment to used nuclear fuel recycling, benefit from quantifying the sensitivity of the system to radiation. Determining the effects of alpha irradiation on a system may be of complementary interest to the effects of gamma irradiation, as alpha radiation has higher linear energy transfer (LET) and will likely result in different chemical damage effects. This becomes important in advanced nuclear fuel cycle processes where the radioactive materials to be handled in solutions contain significant amounts of alpha emitters. Here we describe a method for studying high LET radiation in a liquid system using a TRIGA® reactor and the 10B(n,α)7Li reaction. By fitting a model based on neutron diffusion and absorption to experimentally obtained Fricke dosimetry data, the high LET dose to a sample was predictable over the full range of reactor power available and varying 10B concentration. This method may be applied to study the effects of high LET radiation on any liquid system as long as a suitable molecule containing boron is used and appropriate neutron diffusion coefficients are known. A wide range of high LET dose rates from <10 Gy/h to >1,000 kGy/h may be obtained with this method.  相似文献   

17.
The radiosensitivity of codling moth, Cydia pomonella (L.), eggs in different stages of development was studied. Eggs ranging in age from 1–24 to 97–120 h were exposed, at 24 h intervals, to gamma radiation doses ranging from 10 to 350 Gy. The effects of gamma radiation on egg hatch, pupation and adult emergence was examined. Results showed that the radiosensitivity of codling moth eggs decreased with increasing age. Egg hatch in 1–24 h old eggs was significantly affected at 20 Gy dose and at 60 Gy dose, egg hatch decreased to about 1%. At the age of 25–48 h, however, egg hatch at 60 Gy dose was about 10%, and egg sensitivity to gamma irradiation decreased significantly in the 49–72 h age group; 60 Gy dose had no significant effect on egg hatch. Eggs irradiated few hours before hatch (at the blackhead stage), were the most resistant ones; 100 Gy had no significant effect on egg hatch and at 350 Gy dose over 56% of the eggs hatched. When adult emergence was used as a criterion for measuring effectiveness, however, the effect of gamma radiation was very sever. A dose of 60 Gy completely prevented adult emergence and at 100 Gy dose all resulted larvae died before pupation.  相似文献   

18.
The present study was planned to determine the effect of kale leaf powder and gamma rays on variations in the pH, amino acid and fatty acid profiles of chicken meat at different storage intervals. Significant changes (p ≤ 0.05) in the pH, amino acid and fatty acid profiles of chicken meat following different treatments (KLP (1% and 2%) and gamma irradiation (3k Gy)) were reported at 0, 7 and 14 days of storage. The pH value of the chicken meat sample decreased with the addition of kale leaf powder, whereas the value increased following a gamma irradiation dose of 3 kGy and with the passage of time. During different storage intervals, the minimum reduction in the amino acid and fatty acid quantities in the chicken meat samples was reported after gamma irradiation treatment. However, with the addition of KLP, the amount of amino acids and fatty acids in the chicken meat samples increased. Conclusively, the pH was observed to be reduced in the meat following combined treatment (irradiation + KLP), whereas the 2% KLP treatment improved the amino acid and fatty acid profiles of the chicken samples.  相似文献   

19.
Whole plant of Fagonia arabica with 3 different particle sizes (30, 50 and 70 mesh) were exposed to gamma radiation doses of 1–10 kGy from a Cobalt 60 source. A series of tests was performed in order to check the feasibility of irradiation processing of the plant. The applied radiation doses did not affect (P<0.05) pH and antimicrobial activities of the plant. The total weight of the dry extracts in methanol as well as water was found increased with irradiation. The irradiated samples showed significant increase in phenolic content and free radical scavenging activity using DPPH. Shortly after irradiation (on the day of radiation treatment) high amounts of free radicals were detected in the irradiated plant samples and the chemiluminescence measurements were generally found to be dose dependent. Maximum luminescence intensity was observed in case of samples with mesh size of 30 for all the radiation doses applied. After a period of one month the chemiluminescence signals of the irradiated samples approximated those of the controls. The study suggests that gamma irradiation treatment is effective for quality improvement and enhances certain beneficial biological properties of the treated materials.  相似文献   

20.
The objective of this investigation was to verify the degradation of endrin by gamma irradiation. 60Co was used as radiation source for irradiation of 50 mg L?1 endrin with a varied dose of 1–6 kGy. High performance liquid chromatography (HPLC) coupled with diode array detector was used as an analytical technique to monitor the degradation rate along with numbers of degradation products formed. At dose rate of 6 kGy ≥99% of endrin was degraded. It is proposed that utilization of ionization radiations can be an effective and efficient tool for the removal of halogenated pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号