首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The removal of uranium anionic species from aqueous solutions (initial concentration: 10–2,000 mg/L) by a low- and a high molecular weight polyethylenimine–epichlorohydrin resins was studied in the absence of background electrolytes at initial pH (pHinit) 8 to10. The amount of the sorbed U was determined spectrophotometrically using the Arsenazo III method. The maximum uptake was observed at pHinit 8 using both resins. The maximum uptake capacity observed was 221 and 388 mg U/g for the low- and high molecular weight resin respectively. The uptake data were modeled using a number of 2- and 3- parametric isotherm equations (Langmuir, Freundlich, Langmuir–Freundlich, Toth and Redlich–Peterson). The kinetics of the uranium removal was also studied and modeled using the pseudo-first and pseudo-second order equations. The surface and interior of the resin grains were examined after the sorption experiments by scanning electron microscopy/energy dispersive spectroscopy.  相似文献   

2.
The uptake of cesium from aqueous solutions (pH 5) using titanium phosphates was investigated in the absence and presence of background electrolyte (0.1 M NaNO3) using a batch technique. The determination of cesium was performed by gamma spectroscopy using 137Cs as tracer. The obtained sorption isotherms could be satisfactorily reproduced by a Langmuir sorption equation. The maximum uptake capacity values (q max) calculated fitting the experimental data by this equation were 167 and 118 mg/g for solutions of initial pH 5 in the absence and presence of background electrolyte. Kinetics data obtained at 293, 308 and 323 K could satisfactorily reproduced by the pseudo-second order equation. It was demonstrated that the new synthesized materials can remove considerable amounts of cesium from aqueous solutions and ion exchange is considered to be the principal mechanism for cesium removal. Toxicity characteristic leaching procedure and desorption tests provided data about the application of the sorbents in environmental remediation.  相似文献   

3.
The present study deals with characterization of industrial grade anion exchange resins Amberlite IRN78 and Indion H-IP for which non-destructive radiotracer technique using 131I and 82Br was used. The radioisotopes were used to trace the kinetics of iodide and bromide ion-isotopic exchange reactions taking place in the two resins. It was observed that under identical experimental conditions of 40.0 °C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution for iodide ion-isotopic exchange reaction, the values of specific reaction rate (min?1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol min?1) and log K d were 0.285, 0.544, 0.155 and 12.6 respectively for Amberlite IRN78 resin, which was higher than 0.093, 0.315, 0.029 and 4.9 respectively as that obtained by using Indion H-IP resins. Also at a constant temperature of 40.0 °C, as the concentration of labeled iodide ion solution increases 0.001–0.004 M, the percentage of iodide ions exchanged increases from 68.10 to 74.00 % for Amberlite IRN78 resin, which was higher than the increase of 40.20–42.80 % as observed for Indion H-IP resins. The identical trend was observed for the two resins during bromide ion-isotopic exchange reaction. The overall results indicate that that under identical experimental conditions Amberlite IRN78 resins shows superior performance over Indion H-IP resins.  相似文献   

4.
The present study deals with the kinetic study of iodide and bromide ion-isotopic exchange reactions in organic based anion exchange resins Indion-102 (nuclear grade) and Indion GS-400 (non-nuclear grade) using radiotracer isotopes. The resins in iodide and bromide form were equilibrated respectively with iodide and bromide ion solutions which were previously spiked with 131I and 82Br radiotracer isotopes. For both bromide and iodide ion-isotopic exchange reactions, it was observed that the values of specific reaction rate increase with increase in ion concentration from 0.001 to 0.004 M at a constant temperature of 40.0°C. However, at constant ion concentration of 0.003 M, the specific reaction rate was observed to decrease with rise in temperature from 30.0 to 45.0°C. Also it was observed that for iodide ion-isotopic exchange reaction by using Indion-102 resin, the values of specific reaction rate, amount of iodide ion exchanged, initial rate of iodide ion exchange and logK d were 0.258 min?1, 0.492 mmol, 0.127 mmol/min and 19.2, respectively, which were higher than 0.208 min?1, 0.416 mmol, 0.087 mmol/min and 17.6, respectively, obtained by using Indion GS-400 resin under identical experimental conditions of 40.0°C, 1.000 g of ion exchange resin and 0.003M labeled iodide ion solution. The same trend was observed for the two resins during bromide ion-isotopic exchange reaction. The overall results indicate that, under identical experimental conditions, Indion-102 resin shows higher performance than Indion GS-400 resin.  相似文献   

5.
The acetylcholinesterase enzyme was purified from human erythrocyte membranes using a simple and effective method in a single step. Tacrine (9-amino-1,2,3,4-tetrahydroacridine) is a well-known drug for the treatment of Alzheimer's disease, which inhibits cholinesterase. We have developed a tacrine ligand affinity resin that is easy to synthesize, inexpensive and selective for acetylcholinesterase. The affinity resin was synthesized by coupling tacrine as the ligand and l-tyrosine as the spacer arm to CNBr-activated Sepharose 4B. Acetylcholinesterase was purified with a yield of 23.5 %, a specific activity of 9.22 EU/mg proteins and 658-fold purification using the affinity resin in a single step. During purification, the enzyme activity was measured using acetylthiocholine iodide as a substrate and 5,5′-dithiobis-(2-nitrobenzoicacid) as the chromogenic agent. The molecular weight of the enzyme was determined as about 70 kDa monomer upon disulphide reduction by sodium dodecyl sulphate polyacrylamide gel electrophoresis. K m, V max, optimum pH and optimum temperature for acetylcholinesterase were found by means of graphics for acetylthiocholine iodide as the substrate. The optimum pH and optimum temperature of the acetylcholinesterase were determined to be 7.4 and 25–35 °C. The Michaelis–Menten constant (K m) for the hydrolysis of acetylthiocholine iodide was found to be 0.25 mM, and the V max was 0.090 μmol/mL/min. Maximum binding was achieved at 2 °C with pH 7.4 and an ionic strength of approximately 0.1 M. The capacity for the optimum condition was 0.07 mg protein/g gel for acetylcholinesterase.  相似文献   

6.
An indigenously prepared zinc chloride activated Ipomoea carnea (morning glory), a low-cost and abundant adsorbent, was used for removal of Cu(II) ions from aqueous solutions in a batch adsorption system. The chemical activating agent ZnCl2 was dissolved in deionised water and then added to the adsorbent in two different ratios 1:1 and 1:0.5 adsorbent to activating agent ratio by weight. Studies were conducted as a function of contact time, initial metal concentration, dose of adsorbent, and pH. Activated Ipomoea carnea (AIC) were characterised using scanning electron microscopy (SEM), iodine number and methylene blue number. High iodine numbers indicates development of micro pores with zinc chloride activation. Maximum adsorption was noted within pH range 6.0(±0.05). Adsorption process is fast initially and reaches equilibrium after about 4 hours. The kinetic data were analysed using pseudo-first-order and pseudo-second-order models. The pseudo-second-order kinetic model was found to agree well with the experimental data. Adsorption equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir model represented the sorption process better than the Freundlich model. Based on the Langmuir isotherm, the monolayer adsorption capacity of Cu(II) ions was 7.855 mg?g?1 for AIC (1:1) and 6.934 mg?g?1 for AIC (1:0.5).  相似文献   

7.
Chemical equilibria in aqueous solutions of high-molecular weight heparin (Na4hep) and leucine (HLeu) are calculated through the mathematical modeling of chemical equilibria based on representative experimental pH titration data. In addition, chemical equilibria in the CaCl2-Na4hep-HLeu-H2O-NaCl system in the presence of 0.154M NaCl background electrolyte at a temperature of 37°C in the range of 2.30 ≤ pH ≤ 10.50 and initial concentrations of basic components n × 10?3 M (n ≤ 4).  相似文献   

8.
A new phosphorus-modified poly(styrene-co-divinylbenzene) chelating resin (PS–N–P) was synthesized by P,P-dichlorophenylphosphine oxide modified commercially available ammoniated polystyrene beads, and characterized by Fourier transform infrared spectroscopy and elemental analysis. The adsorption properties of PS–N–P toward U(VI) from aqueous solution were evaluated using batch adsorption method. The effects of the contact time, temperature, pH and initial uranium concentration on uranium(VI) uptake were investigated. The results show that the maximum adsorption capacity (97.60 mg/g) and the maximum adsorption rate (99.72 %) were observed at the pH 5.0 and 318 K with initial U(VI) concentration 100 mg/L and adsorbent dose 1 g/L. Adsorption equilibrium was achieved in approximately 4 h. Adsorption kinetics studied by pseudo second-order model stated that the adsorption was the rate-limiting step (chemisorption). U(VI) adsorption was found to barely decrease with the increase in ionic strength. Equilibrium data were best modeled by the Langmuir isotherm. The thermodynamic parameters such as ?G 0, ?H 0 and ?S 0 were derived to predict the nature of adsorption. Adsorbed U(VI) ions on PS–N–P resin were desorbed effectively (about 99.39 %) by 5 % NaOH–10 % NaCl. The synthesized resin was suitable for repeated use.  相似文献   

9.
Radioanalytical technique using 131I and 82Br was employed to evaluate organic based anion exchange resins Tulsion A-30 and Indion-930A. The evaluation was based on performance of these resins during iodide and bromide ion-isotopic exchange reactions. It was observed that for iodide ion-isotopic exchange reaction by using Tulsion A-30 resin, the values of specific reaction rate (min?1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and logK d were 0.238, 0.477, 0.114, and 11.0, respectively, which was higher than 0.155, 0.360, 0.056, and 7.3, respectively as that obtained by using Indion-930A resins under identical experimental conditions of 40.0°C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution. Also at a constant temperature of 40.0°C, as the concentration of labeled iodide ion solution increases 0.001 to 0.004 M, for Tulsion A-30 resins the percentage of iodide ions exchanged increases from 59.0 to 65.1%, and from 46.4 to 48.8% for Indion-930A resins under identical experimental conditions. The identical trend was observed for both the resins during bromide ion-isotopic exchange reactions. The overall results indicate that under identical experimental conditions, Tulsion A-30 show superior performance over Indion-930A resins. The results of present experimental work have demonstrated that the radioanalytical technique used here can be successfully applied for characterization of different ion exchange resins so as to evaluate their performance under various process parameters.  相似文献   

10.
Batch experiments are carried out for the sorption of La(III) onto commercial macroporous resins containing iminodiacetic (Lewatit TP 207) and aminomethylphosphonic acid groups (Lewatit TP 260). The operating variables studied are initial La(III) concentration, pH, temperature and contact time. Since the extraction kinetics were fast, with a mixture of 0.1 g of resin and 5 mL of lanthanum ions 0.5 × 10?3 mol L?1 solution, extraction equilibrium was reached within 30 min of mixing. The optimum pH values level for quantitative sorption were between 1.5 and 4.6 with Lewatit 207 and about 5.2 with Lewatit TP 260. The sorption capacities of Lewatit TP 207 and Lewatit TP 260 resins are 114.7 and 106.7 mg g?1, respectively. Adsorption equilibrium data were calculated for Langmuir and Freundlich isotherms. It was found that the sorption of La(III) on Lewatit TP 207 was better suited to the Langmuir adsorption model while Freundlich adsorption model fitted better sorption on Lewatit TP 260. Thermodynamics data leads to endothermic and spontaneous process. ΔG° decreases with increasing temperature indicating that sorption process of La(III) on both Lewatit TP 207 and Lewatit TP 260 was more favored at high temperature.  相似文献   

11.
Photocatalytic degradation of propiconazole, a triazole pesticide, in the presence of titanium dioxide (TiO2) under ultraviolet (UV) illumination was performed in a batch type photocatalytic reactor. A full factorial experimental design technique was used to study the main effects and the interaction effects between operational parameters in the photocatalytic degradation of propiconazole in a batch photo-reactor using the TiO2 aqueous suspension. The effects of catalyst concentration (0.15–0.4 gL?1), initial pH (3–9), initial concentration (5–35 mg L?1) and light conditions were optimised at a reaction time duration of 90 min by keeping area/volume ratio constant at 0.919 cm2 mL?1. Photocatalytic oxidation of propiconazole showed 85% degradation and 76.57% mineralisation under UV light (365 nm/30 Wm?2) at pH 6.5, initial concentration 25 mg L?1 and constant temperature (25 ± 1 °C). The Langmuir–Hinshelwood kinetic model has successfully elucidated the effects of the initial concentration on the degradation of propiconazole and the data obtained are consistent with the available kinetic parameters. The photocatalytic transformation products of propiconazole were identified by using gas chromatography–mass spectrometry (GC/MS). The pathway of degradation obtained from mass spectral analysis shows the breakdown of transformation products into smaller hydrocarbons (m/z 28 and 39).  相似文献   

12.
A novel hybrid epoxy/nano CaCO3 composite matrix for catalase immobilization was prepared by polymerizing epoxy resin in the presence of CaCO3 nanoparticles. The hybrid support was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. Catalase was successfully immobilized onto epoxy/nano CaCO3 support with a conjugation yield of 0.67?±?0.01 mg/cm2 and 92.63?±?0.80 % retention of activity. Optimum pH and optimum temperature of free and immobilized catalases were found to be 7.0 and 35 °C. The value of K m for H2O2 was higher for immobilized enzyme (31.42 mM) than native enzyme (27.73 mM). A decrease in V max value from 1,500 to 421.10 μmol (min mg protein)?1 was observed after immobilization. Thermal and storage stabilities of catalase improved immensely after immobilization. Immobilized enzyme retained three times than the activity of free enzyme when kept at 75 °C for 1 h and the half-life of enzyme increased five times when stored in phosphate buffer (0.01 M, pH 7.0) at 5 °C. The enzyme could be reused 30 times without any significant loss of its initial activity. Desorption of catalase from the hybrid support was minimum at pH 7.0.  相似文献   

13.
The kinetics of iodide and bromide ion-isotopic exchange reactions was studied by radio analytical technique using 131I and 82Br as tracer isotopes. The parameters like specific reaction rate (min?1), amount of ions exchanged (mmol), initial rate of ion exchange (mmol/min) and logK d were studied to evaluate the performance of nuclear and non-nuclear grade anion exchange resins Indion-103 and Indion-870. For iodide ion-isotopic exchange reactions under experimental conditions of 35.0°C, 1.000 g of ion exchange resins and 0.002 M labeled iodide ion solution, the parameters were 0.223 min?1, 0.300 mmol, 0.067 mmol/min and 18.7, respectively, for Indion-103, and those of 0.165 min?1, 0.251 mmol, 0.041 /min and 16.2, respectively, for Indion-870. The similar tendency was observed during bromide ion-isotopic exchange reactions. The results suggest that Indion-103 shows greater performance than Indion-870 resin under similar experimental conditions.  相似文献   

14.
Comprehensive characterization of new polymer electrolyte system prepared using polyurethane derived from castor oil polyol was undertaken. The castor oil polyol was synthesized via transesterification and reacted with 4,4′-diphenylmethane diisocyanate to form polyurethane. Polyurethane electrolyte films were prepared by addition of sodium iodide in different weight percentage with respect to the weight of the polymer. The electrolyte films were analyzed using Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, transference number measurement, and linear sweep voltammetry. Fourier transform infrared spectroscopy results confirmed the complexation between polymer and salt. Tan delta peak observed in the tan δ–temperature curve plotted using data obtained from dynamic mechanical analysis indicated that the glass transition temperature of polyurethane decreased with the addition of sodium iodide. The highest conductivity of 4.28 × 10?7 S cm?1 was achieved for the film with 30 wt% of sodium iodide. The performances of dye-sensitized solar cell using the electrolyte systems were analyzed in terms of short-circuit current density, open-circuit voltage, fill factor, and energy conversion efficiency. The polymer electrolyte with 30 wt% sodium iodide showed the best performance with energy conversion efficiency of 0.80%.  相似文献   

15.
The ability of ordered mesoporous carbon CMK-3 has been explored for the removal and recovery of uraium from aqueous solutions. The textural properties of CMK-3 were characterized using small-angle X-ray diffraction and N2 adsorption–desorption, and the BET specific surface area, pore volume and the pore size were 1143.7 m2/g, 1.10 cm3/g and 3.4 nm. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CMK-3 showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 35 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir and Freundlich isotherm. The thermodynamic parameters, ?(298 K), ? and ? were determined to be ?7.7, 21.5 k J mol?1 and 98.2 J mol?1 K?1, respectively, which demonstrated the sorption process of CMK-3 towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed CMK-3 could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g CMK-3.  相似文献   

16.
Present study describes the adsorption of carbofuran (CF) from aqueous solutions using p-tetranitrocalix[4]arene based modified silica through batch and column methods. Various parameters were optimized including initial pesticide concentrations (5 mg L?1), pH (2–10), contact time (60 min) and adsorbent dosage (30 mg). Modified silica was characterized by FT-IR and scanning electron microscope. The adsorption was further explained by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models. Moreover, adsorption kinetics and adsorption thermodynamics were also investigated. Adsorption in dynamic mode was evaluated by breakthrough volumes and the Thomas model, applying batch conditions using 30 mg of modified silica at pH 5. It has been noticed that CF removal efficiency of modified silica was 98 % as compared to bare silica (48 %). Adsorption of CF on modified silica was found to be multilayer and physical in nature. Consequently, adsorption obeys pseudo-second-order kinetic equation following external mass transfer diffusion process as the rate-limiting step. Thermodynamic parameter (ΔG, ΔS, ΔH) values suggest that the adsorption of CF is spontaneous and exothermic in nature. Thomas model rate constant k TH (cm3 mg?1 min?1) and maximum solid phase concentration (q o mg g?1) was found to be 0.52 and 12.3, respectively, in dynamic mode.  相似文献   

17.

The aim of this study is to prepare magnetic beads which can be used for the removal of heavy metal ions from synthetic solutions. Magnetic poly(ethylene glycol dimethacrylate‐vinyl imidazole) [m‐poly(EGDMA‐VIM)] beads were produced by suspension polymerization in the presence of magnetite Fe3O4 nano‐powder. The specific surface area of the m‐poly(EGDMA‐VIM) beads was found to be 63.1 m2/g with a size range of 150–200 µm in diameter and the swelling ratio was 85%. The average Fe3O4 content of the resulting m‐poly(EGDMA‐VIM) beads was 12.4%. The maximum binding capacities of the m‐poly(EGDMA‐VIM) beads were 32.4 mg/g for Cu2+, 45.8 mg/g for Zn2+, 84.2 mg/g for Cd2+and 134.5 mg/g for Pb2+. The affinity order on mass basis is Pb2+>Cd2+>Zn2+>Cu2+. Equilibrium data agreed well with the Langmuir model. pH significantly affected the binding capacity of the magnetic beads. Binding of heavy metal ions from synthetic wastewater was also studied. The binding capacities were 26.2 mg/g for Cu2+, 33.7 mg/g for Zn2+, 54.7 mg/g for Cd2+ and 108.4 mg/g for Pb2+. The magnetic beads could be regenerated up to about 97% by treating with 0.1 M HNO3. These features make m‐poly(EGDMA‐VIM) beads a potential candidate for support of heavy metal removal under magnetic field.  相似文献   

18.
《Analytical letters》2012,45(18):3443-3456
Abstract

The modification of cross‐linked polyacrylamide (CPAAm) and incorporation of methyl thiourea (MeTU) or phenyl thiourea (PhTU) group were utilized in the preparation of two new chelating resins CPAAm‐EDA‐MeTU (resin I) and CPAAM‐EDA‐PhTU (resin II), [EDA=ethylenediamine]. The prepared resins were characterized by elemental analysis and IR spectroscopy. The sorption behaviors of Cd(II), Pb(II), and Zn(II) ions on the prepared resins were studied and the optimum sorption conditions for the tested metal ions were determined. The optimum pH value for the sorption of Cd(II) and Zn(II) ions on both resins I and II was ranged between 7–8. The prepared new resins show very little affinity towards Pb(II) ion. The maximum experimental sorption capacities of resin I towards Cd(II) and Zn(II) ions were 3.2 and 0.6 mmol g?1, respectively, and that of resin II were and 0.6 mmol g?1 in the same prescribed order. Langmuir and Freundlich isotherm constants and correlation coefficients for the present system were calculated and compared. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) for cadmium and zinc sorption on the prepared resins were also determined from the temperature dependence.  相似文献   

19.
The removal of methyl green (MG) dye from aqueous solutions using acid- or alkali-treated Pinus brutia cones (PBH and PBN) waste was investigated in this work. Adsorption removal of MG was conducted at natural pH, namely, 4.5 ± 0.10 for PBH and near 4.8 ± 0.10 for PBN. The pseudo-second-order model appeared to be the most appropriate to describe the adsorption process of MG on both PBN and PBH with a correlation coefficient R2 > 0.999. Among the tested isotherm models, the Langmuir isotherm was found to be the most relevant to describe MG sorption onto modified P. brutia cones with a correlation factor R2 > 0.999. The ionic strength (presence of other ions: Cl?, Na+, and SO42?) also influences the adsorption due to the change in the surface properties; it had a negative impact on the adsorption of MG on these two supports. A reduction of 68.5% of the adsorption capacity for an equilibrium dye concentration Ce of 30 mg/L was found for the PBH; while with PBN no significant influence of the ionic strength on adsorption was observed, especially in the presence of NaCl for dye concentrations superior to 120 mg L?1.  相似文献   

20.
The removal of phenol from aqueous solution was evaluated by using a nonfunctionalized hyper-cross-linked polymer Macronet MN200 and two ion exchange resins, Dowex XZ (strong anion exchange resin) and AuRIX 100 (weak anion exchange). Equilibrium experimental data were fitted to the Langmuir and Freundlich isotherms at different pHs. The Langmuir model describes successfully the phenol removal onto the three resins. The extent of the phenol adsorption was affected by the pH of the solution; thus, the nonfunctionalized resin reported the maximum loading adsorption under acidic conditions, where the molecular phenol form predominates. In contrast both ion exchange resins reported the maximum removal under alkaline conditions where the phenolate may be removed by a combined effect of both adsorption and ion exchange mechanisms. A theoretical model proposed in the literature was used to fit the experimental data and a double contribution was observed from the parameters obtained by the model. Kinetic experiments under different initial phenol concentrations and under the best pH conditions observed in the equilibrium experiments were performed. Two different models were used to define the controlling mechanism of the overall adsorption process: the homogeneous particle diffusion model and the shell progressive model fit the kinetic experimental data and determined the resin phase mechanism as the rate-limiting diffusion for the phenol removal. Resins charged after the kinetic experiments were further eluted by different methods. Desorption of nonfunctionalized resin was achieved by using the solution (50% v/v) of methanol/water with a recovery close to 90%. In the case of the ion exchange resins the desorption process was performed at different pHs and considering the effect of the competitive ion Cl. The desorption processes were controlled by the ion exchange mechanism for Dowex XZ and AuRIX 100 resins; thus, no significant effect for the addition of Cl under acidic conditions was observed, while under alkaline conditions the total recovery increased, specially for Dowex XZ resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号